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Abstract

Software underpins the academic research process across disciplines. To be able to 

understand, use/reuse and preserve data, the software code that generated, analysed or 

presented the data will need to be retained and executed. An important part of this 

process is being able to persistently identify the software concerned. This paper 

discusses the reasons for doing so and introduces a model of software entities to enable 

better identification of what is being identified.

The DataCite metadata schema provides a persistent identification scheme and we 

consider how this scheme can be applied to software. We then explore examples of 

persistent identification and reuse. The examples show the differences and similarities 

of software used in academic research, which has been written and reused at different 

scales. The key concepts of being able to identify what precisely is being used and 

provide a mechanism for appropriate credit are important to both of them.
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Introduction

Software underpins the academic research process across disciplines. To be able to 

understand, use/reuse and preserve data, the software code that generated, analysed or 

presented the data will need to be retained and executed. The increased emphasis from 

funders on the retention and potential reuse of data brings into focus the requirement to 

understand precisely what software was used in the research process, and for 

revalidation this knowledge needs to be at a fine grained level.

A starting point is the persistent identification of software to maintain the identity of  

software as an item over time. This is an emerging area and services such as Zenodo
1
 

are enabling developers to persistently identify code. In this case the persistence refers 

to the identifier rather than the object being referred to, since having a persistent 

identifier does not mean automatically that the object remains persistent. The existence 

of the identifier means that the information about the object remains persistent and 

discoverable. It is more discoverable than having the assigned version number.

However, there are additional considerations in the identification of software, as it is 

a composite artefact and may have different components bundled together. This can be 

seen in the following definition:

‘Computer software includes computer programs, libraries and their 

associated documentation. The word software is also sometimes used in a 

more narrow sense, meaning application software only.’
2

Software is written for a purpose, and while programmers might strive for elegance 

or beauty in the code, the point of software is to be executed. Consequently, if the 

software is to remain reproducible and reusable, additional consideration needs to be 

given to maintain its correct execution behaviour.

To be able to cite or manage software for the long term, then the correct collections 

of components need to be unambiguously identified. To locate software for use or reuse 

then the metadata describing it needs to be fit for purpose. To actually use software then 

the original environment needs to be available, or at least enough to reproduce the 

desired behaviour. The Jisc funded Software Reuse, Repurposing and Reproducibility 

project has been considering what information is needed to establish these points and 

uses some examples to demonstrate this. The project builds on the Recomputation 

project
3
 (Gent, 2013; Gent et al., 2014; Arabas, et al., 2014) and earlier work on a 

framework for software preservation (Matthews et al., 2009; Matthews et al., 2010).

1 Zenodo: https://zenodo.org/ 

2 Wikipedia – Software: https://en.wikipedia.org/wiki/Software 

3 Recomputation project: http://recomputation.org
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Figure 1. Software landing page.

Figure 1 encapsulates the vision of the project: a landing page for a persistently 

identified software object with effective metadata, links to the downloads, including 

source code and a runnable version, together with hooks to other entities in the wider 

context.  To realise this vision, we need to provide consistent guidelines for software 

identification together with local metadata and a virtualized platform for replay and 

recomputation. In the rest of this paper, we concentrate on issues of persistently 

identifying software.

Stakeholders and their Motivation

The Software RRR Phase II report (Gent et al., 2015) identified and interacted with 

three stakeholder groups in the identification, citation and preservation of research 

software: software developers, computational scientists (researchers) creating software, 

and digital preservation experts. We add funders and researchers re-using software to 

this list. In our experience, based on the interactions undertaken which may not be 

representative of the views of all members of the stakeholder groups, the view of these 

groups can be generalised as follows.

On the whole, research software engineers who follow good software engineering 

practice feel that there is no need for the long term maintenance or preservation of 

runnable versions of software, as these can be generated again from the existing code 

repository, and aren’t convinced of the benefits of putting in place further systems. If 

they are following good software development practices then each version will have a 

unique identifier and therefore the view is that there is no need for an external persistent 

identifier beyond the version number. This may be because they are professional 

software developers and may not use their software, and so are unlikely to need the 

provenance trail. It may also be that they are pragmatic people and believe that if the 

code is important enough, then it will be re-implemented following technology shifts.

There has been a mixed reaction from computational scientists. The idea that 

persistently identifying code would lead to better acknowledgement was well received 

by some. The importance of reproducibility of the scientific results from software was 

raised by a couple of people.

Digital preservation experts are interested in the methods and issues around 

preserving computer software, both as an artefact in its own right and as a tool to enable 

the preservation and use of other digital objects. For this group, having a unique 

IJDC  |  General Article



doi:10.2218/ijdc.v11i2.422 Catherine Jones et al.   |   107

identifier is an important step in identifying what is in the collection and should be 

managed. It was identified as a trend for the coming year at iPres 2015.

Funders are increasing their interest in this area, as for some areas of research the 

computer code is the key research output; however there is no consistent approach.

It is acknowledged that it can be difficult both to find academic research software 

which has been written by others and then to re-use it. By assigning persistent 

identifiers to software used in the research literature and citing this software, 

discoverability is supported.

So to summarise, the further from the creation of the code, the greater the interest in 

preserving it. The idea of being able to prove reproducibility of results from software 

analysis is gaining traction but this is still an area which is novel to many.

Issues in Persistent Identification

A key issue is what exactly needs to be identified; in order to usefully assign persistent 

identifiers to software, we need a common understanding of what is meant by the term 

software. The Wikipedia definition given in the introduction emphasises its composite 

nature, while saying nothing explicit about the format of the computer software: is it 

source code which needs to be compiled/interpreted to be able to use it, or is it some 

form of running code? Furthermore, having the source code doesn’t necessarily mean 

that one will be able to get it to work without a good understanding of the dependencies 

and operating system it was designed for.

As software is a complex object and may include one or more physical files – 

including source code, an executable version and additional items, such as included 

libraries and documentation – we need to be clear what is being referenced by an 

identifier. Further, software typically is an evolving artefact, with different expressions 

being made available through a software release cycle, reflecting changes in 

functionality and the computing environment.

To analyse this further, we consider some typical scenarios where persistent 

identifiers for software might be used:

 To attribute credit for the intellectual conception or ownership of a software 

product, its major design features and functionality; or project leadership of the 

product’s development over a sustained period of time. This may be described in 

a paper describing the overall nature of the software product, and use the general 

name by which the software in known: e.g. “The ISIS and SNS Neutron Sources 

are responsible for Mantid.”

 To enable a data reuser to understand which software package is most suitable 

for processing the data, or to communicate which software was used to process 

data for a particular result in a paper. In this case, we usually need to know the 

specific features of the software product being used, so rather than refer to the 

whole product, which will evolve over its lifetime, we typically wish to know 

which version of the software is being referenced – that is, which release with a 

particular functionality. For example, “to process the experimental data we used 

Mantid version 3.1.” We may also need to know details about the operating 

environment and sometimes hardware the software version is tailored for to 

understand more exactly the behaviour of the software.
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 To enable detailed validation of results we may need to know the details of the 

specific instance of the software which was actually used. This might include 

how it was configured, the exact nature of the operating environment and 

hardware setup, possibly including network performance. For example, “Mantid 

v 3.5.1 running on a Dell XPS 9350 with Intel i7 2.5GHz CPU and 16GB RAM 

with Red Hat Enterprise Linux v.7.1.”

In different scenarios we would typically refer to a different collection (or 

collections) of artefacts of the ‘software’, typically representing the different stages of 

the software product lifetime. Thus we propose that persistent identifiers should be 

assigned to logical entities representing the stages of software release cycle, and which 

can be mapped to a collection of component artefacts.

A Model of Software Entities

Software development generally takes place within a project lifecycle of design, 

modification and release. As software evolves, changing its scope, functionality and the 

constraints imposed by the computing environment, new collections of digital artefacts 

are made available as ‘versions’ with particular features. We define a model describing 

different software entities and their relationships representing the lifetime of a software 

product at different levels of detail. It may be appropriate to assign persistent identifiers 

at any and each of these levels depending on the use they are appropriate for, although 

in general it might be acceptable to miss out some of these entities. Four entities reflect 

the release process in a software product’s lifecycle, as shown in Figure 2.

Figure 2. Relationships between software entities.

These entities are defined as follows.

 Product: The top-level conceptual entity encompassing the whole development 

and release lifecycle of the software. It is likely to be how the software is 

referred to commonly or informally. Using an identifier at this level may be 

appropriate in order to reference the general concept of a particular software 

artefact regardless of the specific version, or the continued use or ownership of 

the software over a long period, If different versions are referenced the product 

can stand as a unifying entity.
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 Version: A version of a software product is a single, coherent release of the 

product with a well-defined functionality and behaviour, defining how it 

interacts with the computing environment. This level may be needed to identify 

a specific team of contributors, or where a particular functionality of the version 

(which may be different in other versions) is being referenced, for example to 

specify how data and software may be reused.

 Variant: Versions may have a number of variations adapted to different 

operating environments (e.g. version of Windows, MacOS or Linux). A software 

Variant is usually a manifestation of the product that is adapted for deployment 

in a specific software operating environment. In this case, the functionality of 

the version is maintained as much as is practical. However, due to the different 

behaviours of different platforms, there may be variations in product behaviour, 

such as in error conditions and user interaction. This may be the appropriate 

level to use for validation of results or emulation.

 Instance: An actual occurrence of a software product which is found on a 

particular environment or machine
4
 is known as an Instance. It may be also 

referred to as an installation or deployment. This would be an appropriate level 

for packaging, and for detailed reproduction and validation of results in a 

specific (virtual) environment.

The model also specifies some relations between the entities as in the diagram we 

omit a detailed description for brevity as these are fairly self-explanatory. These 

relations should compose in a natural fashion; thus if a variant entity is omitted, we can 

relate an instance with the version or product entity with an IsVariant relation. Note that 

there is a subProduct relationship; large software developments often have a number of 

related sub-products within them which have their own attribution and product 

lifecycles.

Thus, in this model, the persistent identifiers refer to an abstract entity in this 

hierarchy, which can be described by appropriate metadata. On dereferencing the 

identifier, we would typically expect the user to be presented with metadata describing 

the entity (e.g. release notes of a version) and also a collection of (computer) artefacts – 

an aggregation of other objects which manifest the entity, such as a collection of files. 

These files may be executables, source code, configuration files, documentation, 

licences and other (digital and physical) objects.

DataCite Metadata and its use for

Software Identification

DataCite
5
 issues Digital Object Identifiers for data and other research artefacts. While it 

is not the only persistent identification system available, its wide adoption means it is an 

important source for identification of software, and consequently we concentrate on 

how to adapt Datacite DOIs for the citation of software entities.

DataCite provides set of metadata elements to characterise digital objects for search 

and discovery (DataCite Metadata Working Group, 2015). The DataCite elements have 

been analysed to propose an appropriate profile for describing software. We do not 

4 Including virtual machines or cloud instances.

5 Datacite: www.datacite.org
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prescribe the content of any specific element but rather give a suitable interpretation for 

software and enable the user to establish the appropriate usage for their own situation. 

We give some examples of these metadata usage guidelines for software in Table 1. A 

complete list is given in (Gent, Jones and Matthews, 2015).

Table 1. DataCite metadata elements.

Element Description

Creator This element identifies the people responsible for the 

software. However, this may not be straightforward to 

ascertain as software has a long life-span and may be 

worked on by many people. The point during the 

development cycle that the first DOI is given may also 

affect those identified as creators.

Title In a software context, there are some specific issues. If it a 

piece of software written by a single person for a specific 

project does it actually have a name? Is the official name 

different from the common name? What effect is versioning 

or branching of code going to have on the name? Will the 

name used be unique enough for it to be found and 

distinguished from other search results?

ResourceTypeGeneral There is a controlled value of software, but this is a rather 

wide category and at present there are few suggestions for 

how this might be broken down further. This is an area with 

potential for further work.

Description This field is designed to enable the addition of further 

information to assist in the understanding of the object 

being identified. Currently the two subtypes being used for 

software are Abstract and Other. These do not encourage the 

use of this field for technical information that may be 

needed to understand the object and a new subtype with a 

more descriptive label may be of assistance. This suggestion 

has been adopted and will be in the imminent V4.0 release5.

The element which, in our opinion, needs the most adjustment to ensure that it is fit 

for purpose for describing software is the relationship type. This describes the 

relationship between the digital object being identified and other digital objects. The 

current set of relationships has been developed from the publication world, which 

doesn’t map to the relationships between different software objects. A particular 

terminology problem is IsCompiledBy which has entirely different meanings for the 

publication and software communities. Work in this area is being started for version 4.1 

of the metadata standards.

Of particular interest are the relationships between the objects described in the 

model above, alongside cases such as the development forking into separate products.
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Example of Persistently Identifying Software

We illustrate the use of the model to assign software DOIs with the following example 

from practice.

Mantid is an open source development for scientific data analysis used within the 

Neutron Scattering community
6
. The project assigns DataCite DOIs for attribution and 

reuse, and DOIs have been assigned at different entity levels from our model, with 

DataCite metadata used to relate versions of the product, as in Figure 3.

Figure 3. Relationships between MANTID software entities.

Thus a product level DOI (doi:10.5286/SOFTWARE/MANTID) is assigned for the 

whole software package. Each new version has new functionality and a different 

development team and so there is also a version with its own specific DOI. For 

example, version 3.5.1 is assigned the DOI doi:10.5286/SOFTWARE/MANTID3.5.1.

The relationships between these versions are identified in the DataCite Metadata. 

However, the DataCite metadata does not have the appropriate fields as specified in our 

model, and thus we have adopted our profile of the DataCite metadata to represent the 

entity relations. Thus we have use the DataCite field IsPartOf to represent the 

IsVersionOf relation in the software entity model, while the IsNextVersionOf and 

IsPreviousVersionOf have analogous relationships in both models.

Software Reuse in Practice

We next illustrate some of the difficulties encountered in identifying and reusing 

research software, once identified, in a particular biomedical working environment over 

a number of years in a second example at the Cancer Research Biobank at the 

University of Leicester
7
. This group worked with the BRISSKit project

8
 to tailor and 

document an instance of the OpenSpecimen
9
 software for their active sample data 

management requirements during 2013-14. The Biobank plans to continue to use and 

tailor the software in a range of future research projects. Rather than rely on individual 

project funded researchers with varying technical experience to curate and update the 

6 MANTID is a framework that supports high-performance computing and visualisation of materials 

science data. See: http://www.mantidproject.org/Main_Page 

7 Cancer Research Biobank: http://www2.le.ac.uk/partnership/lcrc/facilities/cancer-biobank 

8 BRISSKit: http://www.brisskit.le.ac.uk 

9 OpenSpecimen: http://www.openspecimen.org/ 
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relevant software, the Biobank intended to preserve the tailored instance of the previous 

open source build in order to reuse and adapt it in future. However, no permanent 

identifiers had been assigned, just a standard code repository deposit and 

documentation.

In 2015, on application of OpenSpecimen to a new use case, an urgent need arose to 

further adapt the previous tailored version. As often is the case, it would need to be 

undertaken by a different researcher. In the meantime, a new major release of the core 

OpenSpecimen code itself was now available and the focus of the open source 

community support. Reusing a locally tailored but significantly earlier version of the 

code was therefore impractical for all but the most technically advanced researcher.

It may not be enough to simply deposit versioned code in a Github repository since 

this does not allow redeployment, as will often be desired, without the involvement of a 

more technically proficient researcher or support resource. This argues for the creation 

of recomputation platforms allowing a less technical researcher to redeploy previously 

tailored code and environment where needed.

In comparison, Mantid is designed to be used ‘as is’. Further development is being 

done by a resourced development team rather than the expectation that an individual 

researcher reusing the software would modify the code. Figure 4 gives the landing page 

for Mantid version 3.5.1, which provides the release notes for this particular version and 

a link to downloads to enable the code to be installed locally.

Figure 4. Landing page for Mantid 3.5.1.

This enables the reuse of a clearly identified, specific version of the software. Note 

that the page includes a recommended citation for inclusion in citing papers, including 

the use of the DOI.
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Conclusions and Further Work

The Jisc funded project has now been completed, but work around the citation of 

software is being carried on by the Force11 Software Citation working group
10

, which 

the authors have joined, along with a UK-based Research Software Engineers network
11

 

which can also help facilitate further work in this area of rapidly growing importance.

For persistent identification, citation and reproducibility to become common place 

there needs to be changes to researcher culture and credit. However, it is important to 

enable these changes by providing consistent guidance and usage.

The examples show the differences and similarities of software used in academic 

research, which has been written and reused at different scales. The key concepts of 

being able to identify what precisely is being used and provide a mechanism for 

appropriate credit are important to both of them.

Finally, we highlighted the key importance for the many researchers who need to 

reuse existing research software that they themselves may not have written or adjusted. 

Instances of such software are not normally preserved within a group or at institutional 

level between projects without a unique business case to do so at institutional level. 

Hence making a recomputable instance available via a neutral cloud type platform takes 

on critical importance if researchers are to be able to sustain, reuse and gain continued 

credit for their own and modified open source software.
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