
doi:10.2218/ijdc.v7i1.217 Grammar-Based Specification 95

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

Grammar-Based Specification and Parsing of Binary File
Formats

William Underwood,

Principal Research Scientist,

Georgia Tech Research Institute

Abstract

The capability to validate and view or play binary file formats, as well as to convert binary file
formats to standard or current file formats, is critically important to the preservation of digital data
and records. This paper describes the extension of context-free grammars from strings to binary files.
Binary files are arrays of data types, such as long and short integers, floating-point numbers and
pointers, as well as characters. The concept of an attribute grammar is extended to these context-free
array grammars. This attribute grammar has been used to define a number of chunk-based and
directory-based binary file formats. A parser generator has been used with some of these grammars
to generate syntax checkers (recognizers) for validating binary file formats. Among the potential
benefits of an attribute grammar-based approach to specification and parsing of binary file formats is
that attribute grammars not only support format validation, but support generation of error messages
during validation of format, validation of semantic constraints, attribute value extraction
(characterization), generation of viewers or players for file formats, and conversion to current or
standard file formats. The significance of these results is that with these extensions to core computer
science concepts, traditional parser/compiler technologies can potentially be used as a part of a
general, cost effective curation strategy for binary file formats.

International Journal of Digital Curation (2012), 7(1), 95–106. http://dx.doi.org/10.2218/ijdc.v7i1.217

The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation
Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

96 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

Introduction

Automated tools are required for identifying and validating the formats of the huge
number of files ingested into digital data and record archives. Invalid file formats can
arise from data transmission errors, media deterioration, poor quality software tools,
or as a result of intentional corruption. Automated tools are also needed for viewing or
playing text and binary file formats, and for converting legacy and obsolete file
formats to standard or current formats. Technologies such as data description
languages have emerged to address these preservation challenges (Dunckley et al.,
2007).

Context-free grammars have been used to specify the syntax of programming
languages. Attribute grammars provide a framework for formally specifying the
semantics of a language based on its context-free grammar and for addressing the
mildly context-sensitive features of programming languages, such as agreement of the
data types of variables in expressions with data type declarations. Such grammars
have parsing/translation algorithms that can be used for syntax-checking and
interpretation or translation of the languages the grammars define.

The research question addressed by this research is whether it is possible to extend
the context-free grammars used to specify the syntax of programming languages to the
specification of binary file formats, and to use these grammars with parsers for
validating the file formats of binary files. The next section discusses the traditional
approach to specifying file formats and two of the major families of binary file
formats. Then extensions to the concepts of context-free grammars and attribute
grammars that enable the specification of binary file formats are described. An
example of an attribute array grammar for a chunk-based binary file format is then
presented. Recursive descent parsers for these classes of grammars are then described.
Experience in using ANTLR, a parser generator for LL(k) string grammars, in
generating parsers for recognizing the formats of binary files is discussed. Finally,
related research is described and results are summarized.

Binary File Formats

In a binary file format specification, fields are named and have as attributes a data
type, length and sometimes a constant value. Fields are offset at addresses relative to
the beginning of a file. Many binary file formats are specified using pseudo-regular
expressions or pseudo-EBNF notation. EBNF (Extended Backus-Naur Form) is a
notation for expressing context-free grammars in a compact, human readable way.
Pseudo-EBNF is similar in concept to pseudocode, which is a high-level description
of a computer algorithm that is intended for human understanding, but that omits
details that would be necessary for computer execution. The pseudo-EBNF (or regular
expression) specification of a file format is augmented with a natural language
description of the details that are not actually expressible in the EBNF (or regular
expression) notation. These details are often the context-sensitive relationships of the
size of an array to its actual length, or the relationship of an address pointer to the
actual location of the data pointed to in the file. These context-sensitive relationships
are not expressible in a context-free grammar (or EBNF notation). It is a goal of this

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

doi:10.2218/ijdc.v7i1.217 William Underwood 97

research to extend the EBNF notation and concept of a context-free grammar to
include the details that are necessary to precisely specify the file formats of binary file
formats that include these context-sensitive features.

Families of Binary File Formats

Binary file formats with a similar file structure are referred to as a family of file
formats. There are two families of binary file formats that are readily distinguished:
the chunk-based and the directory-based file formats. These two families do not
exhaust the possible file structures. For instance, there are executable binary file
formats and file header-body file formats that have different file structures and will be
considered in the future.

Chunk-based file formats were created by Electronic Arts and Commodore-Amiga
as the Interchange File Format (IFF) (Morrison, 1985). An IFF file itself is one entire
IFF chunk. A chunk consists of an ID tag, a size, and size bytes of data. The data may
include chunks called subchunks. Subchunks have the same structure as chunks.
Subchunks can have subchunks. Chunk-based file formats are primarily used as
containers for multimedia, but have also been used for word processing files including
pictures and other figures.

The Audio Interchange File Format (AIFF) developed by Apple computer in 1988
was based on Electronic Arts Interchange File Format. The Core Audio Format
(CAF), Apple’s replacement format for AIFF, remains a chunk-based format (Apple,
2005). The Resource Interchange File Format (RIFF) introduced in 1991 by IBM and
Microsoft (1991) is also based on Electronic Arts’ Interchange File Format. The
Microsoft container formats, such as Audio-Video Interleave (AVI) and Waveform
PCM (WAV), use RIFF as their basis. WebP (Google, 2010), a picture format recently
introduced by Google, also uses RIFF as a container.

Microsoft’s Advanced Systems Format (ASF) (Microsoft, 2004) is also a chunk-
based container format. The most common file formats contained within an ASF file
are Windows Media Audio (WMA) and Windows Media Video (WMV). Microsoft’s
Binary Interchange File Format (Rentz, 2008) (Microsoft Excels’s File Format) is
chunk-based.

File format specifications for chunk-based formats may use terms other than
chunks in describing the format, for instance, “atoms” in QuickTime/MP4,
“segments” in JPEG, and “tagged data representations” as in AutoCAD DXF.
Underwood and Laib (2011) have identified more than 75 file formats that are chunk-
based binary file formats.

Another family of binary file formats are directory-based. A directory-based file
format consists of one or more directory tables, which contains one or more directory
entries. A directory entry specifies where the actual data for a type of information is
located. This is the scheme used in TIFF files, OLE (Microsoft Object Linking and
Embedding) files, OASIS OpenDocument and Microsoft Open Office files.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

98 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

Context-Free Grammars and Attribute Grammars

Context-free grammars have been widely used to define the lexical and syntactic
structure of programming languages. The concept of a context-free grammar for string
languages can be extended to binary files in the following manner.

An array is a data structure consisting of a collection of elements (values or
variables), each identified by an index. An array is stored so that the position of each
element can be computed from its index. For example, an array of 10 integer
variables, with indices 0 through 9, may be stored as 10 (4 byte) words at file
addresses 0, 4, 8, …36, so that the element with index i has the address 4 × i.

Arrays are used to implement many other data structures, such as lists and strings.
In most modern computers, the internal memory and external memory of storage
devices (and files on those devices) is a one-dimensional array of data types, whose
indices are their addresses.

A data type is a classification of one of various types of data, such as floating-
point, integer, character, pointer, or Boolean, that determines the possible values for
that type, the operations that can be performed on values of that type, and the way
values of that type can be stored. Data types have names such as int16, int32, float,
char, bool, ptr. We define a binary file to be an array of values of data various types.

We define a context-free array (binary file) grammar AG as a quintuple <N, D, Σ,
S, P> where:

N is a finite set of non-terminal symbols,

D is a set of data types,

Σ is a finite set of binary values of data types D called terminals,

S N is the start symbol,

P is a set of production rules of the form N → {N Σ}*

Let DataTypes indicate the union of all the values of all datatypes D. The set of all
binary files is BinaryFiles = [Indices → DataTypes], where Indices = {1, . . . , }.
The language generated by a context-free array (binary file) grammar AG is the set
L(AG) = {w : w BinaryFiles and S w}.

Attribute Grammars

Context-free grammars cannot represent context-sensitive aspects of programming
languages, such as: (1) enforcing the constraint that all variables are declared before
they are used, or (2) checking the number of parameters in a function call against the
number in the function’s declaration. Context-free grammars have also been used to
define the syntax of English and other natural languages, but they cannot define such
context-sensitivity as subject verb agreement in English sentences.

Context-free grammars also cannot represent the semantics of programming
languages. Knuth (1968, 1971) proposed an extension of context-free grammars

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

doi:10.2218/ijdc.v7i1.217 William Underwood 99

termed attribute grammars that addresses the semantics as well as the context-
sensitivity of programming languages.

An attribute grammar AG is a triple <G, A, AR>, where

G is a context-free grammar for the language,

A associates each grammar symbol X (N Σ) with a set of attributes, and

AR associates each production R P with a set of attribute computation rules and
conditional attribute rules.

Attribute Grammars for Binary File Formats

Figure 1 shows an attribute grammar used to specify the ILBM chunk-based binary
file format (Morrison, 1986). The rules of the grammar are in an Extended BNF
notation. The context-free rules are in a black font. The computation attribute rules are
in a red font. The conditional attribute rules are in a green font.

The initial symbol of the grammar is <ILBM>. The interpretation of the first rule
is: The first four bytes of the file format contain the characters “FORM”. Next is a 4-
byte (32-bit) unsigned integer indicating a chunk size that is the size of the remainder
of the file. The next four bytes contain the characters “ILBM”. This must be followed
by a propertyChunk, a dataChunk and a BODY chunk.

Figure 1. An attribute grammar for the ILBM chunk-based file format.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

100 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

Figure 2 shows the parse tree for an actual ILBM file as defined by the binary array
attribute grammar for the ILBM file format. This parse tree was manually constructed,
but a parse tree with similar structure could be generated by the parser by including
computational attribute rules that construct the parse tree during a parse.

The root of the parse tree is the start symbol of the grammar <ILBM>. The
unsigned integer indicating the chunk size has decimal value 50,456. The chunk size
of the BMHD chunk is decimal 20. The BitmapHeader data chunk contains metadata
about the bitmap stored in the BODY chunk. The colour palette is stored in the CMAP
chunk.

Figure 2. A parse tree for an ILBM file.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

doi:10.2218/ijdc.v7i1.217 William Underwood 101

A Recursive Descent Parser for Binary File Format
Grammars

A recursive descent parser is a top-down parser built from a set of recursive
procedures (or a non-recursive equivalent), where each such procedure implements
one of the production rules of the grammar. A predictive parser is a recursive descent
parser that does not require backtracking. Predictive parsing is possible only for the
class of LL(k) grammars, which are the context-free grammars for which there exists
some positive integer k that allows a recursive descent parser to decide which
production to use by examining only the next k tokens of input. A recursive descent
parser for the binary file format grammars defined in this paper do not require a
separate lexical scanner to identify the data of a file. The data types are predicted by
the grammar rules.

The semantic rules of an attribute grammar can be included in the recursive descent
parser to check for context-sensitive aspects of the grammar, such as array size or
image dimensions, and use these values in parsing the arrays or images. The pointers
to file addresses that occur in the file formats are handled by pushing the addresses
encountered in the file onto a pushdown stack, along with the expected nonterminal
expected at that location. When the parser exhausts the procedures implementing
production rules, the topmost address and nonterminal on the pushdown stack are
popped and the procedure corresponding to that nonterminal is executed.

Recursive descent parsers with a pushdown stack can be used with binary file
format grammars to create file format recognizers. A recognizer (syntax checker or
validator) for a file format is a parser that reads a file and generates error messages if
the file does not conform to the syntax specified by the grammar.

Generating Parsers for Binary Formats with ANTLR

What we want is a parser generator whose input is a binary file attribute grammar for
a particular binary file format, and whose generated output is the Java source code of a
recursive descent parser (with a pushdown stack if needed) for the class of binary file
formats specified by the grammar. Such a parser generator does not yet exist, but there
is a widely used parser generator for attribute grammars for string-based languages.

ANTLR (ANother Tool for Language Recognition) is a parser generator that uses
LL(k) parsing (Parr, 1995, 2007). ANTLR takes as input an attribute grammar that
specifies a language and generates as output source code for a recognizer for that
language. ANTLR supports generating code in a number of the programming
languages, including C, Java, JavaScript and Python.

ANTLR also generates a lexical scanner from lexical rules in the grammar. A
lexical scanner is a program that converts a sequence of characters into tokens. A
lexical scanner is not needed to parse binary file formats, because the data types
predicted by the parser are the tokens of the grammar. Furthermore, the capability to
recognize LL(k) grammars is not needed, because the binary file format grammars
specified so far do not require lookahead of k symbols.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

102 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

However, it has been possible to use ANTLR to test our binary file format
grammars in recognizing the chunk-based and directory-based binary file formats
(Underwood & Laib, 2011). This was accomplished by writing a lexical scanner that
treats each input byte in a file as a character token. Then functions are created for each
data type in the binary file grammar that convert the appropriate number of character
tokens to binary data types, e.g., int16, int32, etc. This is effective, if somewhat
clumsy, and has allowed us to test our attribute grammars for binary file formats as
well as to demonstrate the feasibility of creating a parser generator for binary file
grammars.

Validation of File Formats

File format identification ascertains the purported format of a file. A capability to
validate binary file formats assumes that the file format of a file has already been
identified. In this research, we use a file type identifier based on the UNIX file
command and a magic file that we have created (Underwood, 2009). We have samples
of chunk-based and directory-based file formats. We also have file signature tests
(magic tests) for these file types. The file format parser corresponding to the identified
file format is applied, and if there are no errors, metadata corresponding to the file is
updated to indicate the date that the file format was validated.

The file format validator should indicate the features of the file format that do not
comply with the specification. The rules of the attribute grammar can be used to
generate error messages similar to those generated by a programming language
compiler. This includes such errors as field values that are out of range and structural
errors. The rules of the attribute grammar can also be used to extract attribute (field)
values for further description of the file.

Semantic Correctness

Validity of a file format does not guarantee semantic correctness of the digital object
represented by the file format. In particular, there may be semantic constraints
between the fields of a file that are not satisfied, for instance, between the fields of a
database table. The semantic rules of an attribute grammar can be used to check for
satisfaction of some of these constraints.

Related Research

Researchers have developed a number of data description languages for accessing the
contents of files and validating file formats. ASN.1 (Abstract Syntax Notation One)1 is
an international standard whose purpose is to specify the format of data used in
telecommunication protocols. It has seen limited use in the specification of ad hoc
scientific data formats.

1 ISO/IEC 8824-1:2008. Information Technology – Abstract Syntax Notation One (ASN.1):
Specification of the basic notation

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

doi:10.2218/ijdc.v7i1.217 William Underwood 103

EAST is a data description language developed by the Consultative Committee for
Space Data Systems (2010). The Data Entity Description Specification Language
(DEDSL) can be used in conjunction with EAST for defining semantic information.
The EAST description is used to interpret and provide access to information in binary
and text files.

DATASCRIPT (Back, 2002) supports specifying and parsing binary data and has
been used to manipulate Java jar files and ELF object files. PADS (Processing Ad hoc
Data Sources) was designed for use with ad hoc scientific data sets (Fisher & Grubner,
2005). A PADS compiler compiles a PADS description into tools that can be used to
recognize, manipulate and transform the data into other formats.

The Data Format Description Language (DFDL) is being developed by a Working
Group of the Open Grid Forum (Powell, Beckerle & Hanson, 2011). Version 1 of the
language specification was published in 2011 and a parser is being implemented.

Each of the data description languages described above can be used to define data
types and file structures of binary files. The binary file format grammar described in
this paper most closely resembles ANS.1 and DFDL. However, the binary file
grammar presented in this paper is the only data description language based on formal
grammars that is used for creating recognizers for file formats.

JHOVE (JSTOR/Harvard Object Validation Environment) is an extensible system
designed to provide automated and efficient identification and validation of the
formats of digital files. JHOVE is a format-specific digital object validation API
written in Java. JHOVE supports validation of the following formats: AIFF, ASCII,
GIF, HTML, JPEG, JPEG 2000, PDF, TIFF, UTF-8, WAVE, and XML. JHOVE2 is
second generation validation environment (California Digital Library, 2011).

The research reported in this paper is similar in intent to that of the JHOVE
projects – validation of binary file formats. As a matter of fact, binary file grammars
and parsers have been constructed for the chunk-based file formats AIFF, JPEG, and
WAVE, as well as the directory-based format TIFF. However, the research reported
herein differs from that of the JHOVE project in that what is sought is a technology
for generating validators for binary file formats from grammars specifying the binary
file format.

Conclusion

The research question addressed by this research is whether it is possible to extend the
context-free grammars used to specify the syntax of programming languages to the
specification of binary file formats and to use these grammars with parsers for
validating the file formats of binary files. Two of the major families of binary file
formats, chunk-based and directory based, were described. Then extensions to the
concepts of context-free grammars and attribute grammars that enable the
specification of binary file formats were described. An example of an attribute array
grammar for a chunk-based binary file format was then presented. Recursive descent
parsers for these classes of grammars were then described. Experience in using
ANTLR, a parser generator for LL(k) string grammars, in generating parsers for

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

104 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

recognizing the formats of binary files was discussed. Finally, related research in data
description languages for binary file formats and the JHOVE project in creating Java-
based tools for validating file formats were described.

It is concluded that it is possible to extend context-free grammars to the
specification of chunk-based and directory-based binary file formats. Furthermore,
these grammars can be used with recursive descent parsers (some requiring pushdown
stacks) for validating the file formats of chunk-based and directory-based binary files.
It remains to be determined whether these attribute grammars based on binary file
(array) grammars are adequate to define other families of binary file formats.

To be a practical technology for generating recognizers (validators) for binary file
formats, a parser generator is needed that creates a recursive descent parser (with
pushdown stack, if needed) from a binary file grammar. ANTLR, which accepts LL(k)
grammars as input and generates a lexical scanner, as well as a parser is too
heavyweight a parser generator for this task and does not have the requisite data types
built in.

Among the potential benefits of an attribute grammar-based approach to
specification and parsing of binary file formats is that attribute grammars support not
only an approach to format validation, but to generation of error messages during
validation of format, validation of semantic constraints, attribute value extraction
(characterization), generation of viewers or players for file formats, and conversion to
current or standard file formats. The significance of success in this research task is
that if binary file formats can be specified with binary file grammars, then only one
parser generator is needed to generate the many parsers needed for validating many
binary file formats. Similarly, a single compiler-compiler could be used for
conversion of legacy file formats to current or standard formats. Finally, the same
compiler-compiler could be used for generating viewer/players for most file formats.
This would increase the likelihood of preserving and making available into the
indefinite future those digital records encoded in binary file formats.

Acknowledgements

This research project is sponsored by the Applied Research Division of the National
Archives and Records Administration, and the Army Research Laboratory under
Army Research Office Cooperative Agreement W911NF-10-2-0030.

References

Apple Computer. (2005). Core Audio Format Specification. Retrieved from
http://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/C
AFSpec/CAF_spec/CAF_spec.html#//apple_ref/doc/uid/TP40001862-CH210-
TPXREF101

Back, G. (2002). A specification and scripting language for binary data. Generative
Programming and Component Engineering, 2487, 66-77.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

http://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html%23//apple_ref/doc/uid/TP40001862-CH210-TPXREF101
http://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html%23//apple_ref/doc/uid/TP40001862-CH210-TPXREF101
http://developer.apple.com/library/mac/#documentation/MusicAudio/Reference/CAFSpec/CAF_spec/CAF_spec.html%23//apple_ref/doc/uid/TP40001862-CH210-TPXREF101

doi:10.2218/ijdc.v7i1.217 William Underwood 105

California Digital Library. (2011). JHOVE2 User’s Guide. Retrieved from
https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-Users-
Guide_20110222.pdf

Consultative Committee for Space Data Systems. (2010). The data description
language EAST specification (CCSD0010). Retrieved from
http://public.ccsds.org/publications/archive/644x0b3.pdf.

Dunckley, M. Rankin, S., Conway, E. & Giaretta, D. (2007). The use of file
description languages for file format identification and validation. Paper
presented at the PV 2007 Conference: Ensuring the Long-Term Preservation and
Value Adding to Scientific and Technical Data, Oberpfaffenhofen/Munich,
Germany. Retrieved from http://epubs.cclrc.ac.uk/work-details?w=50089

Fisher, K. & Gruber, R. (2005). PADS: A domain specific language for processing ad
hoc data. Paper presented at the ACM Conference on Programming language
Design and Implementation. ACM Press. Retrieved from
http://www.padsproj.org/papers/pldi.pdf

Google. (2010). WebP RIFF Container. Retrieved from
http://code.google.com/speed/webp/docs/riff_container.html

IBM & Microsoft. (1991). Multimedia programming interface and data specifications
1.0. Retrieved from http://www-
mmsp.ece.mcgill.ca/documents/audioformats/wave/Docs/riffmci.pdf

Knuth, D.E. (1968). Semantics of context-free grammars. Mathematical Systems
Theory, 2, 127-145.

Knuth, D.E. (1971). Semantics of context-free grammars (corrections). Mathematical
Systems Theory, 5, 95-96.

Microsoft. (2004). Advanced Systems Format (ASF) specification. Retrieved from
www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx

Morrison, J. (1985). “EA IFF 85” Standard for Interchange Format Files. Electronic
Arts. Retrieved from www.martinreddy.net/gfx/2d/IFF.txt

Morrison, J. (1986).“ILBM” IFF Interleaved Bitmap. Electronic Arts. Retrieved from
www.fine-view.com/jp/labs/doc/ilbm.txt

Parr, T.J. & Quong, R.W. (1995). ANTLR: A predicated-LL(k) parser generator.
Software: Practice and Experience 25(7).

Parr, T. (2007). The definitive ANTLR reference: Building domain-specific languages.
Raleigh: Pragmatic.

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

http://www.fine-view.com/jp/labs/doc/ilbm.txt
http://www.martinreddy.net/gfx/2d/IFF.txt
http://www.microsoft.com/windows/windowsmedia/forpros/format/asfspec.aspx
http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/Docs/riffmci.pdf
http://www-mmsp.ece.mcgill.ca/documents/audioformats/wave/Docs/riffmci.pdf
http://code.google.com/speed/webp/docs/riff_container.html
http://www.padsproj.org/papers/pldi.pdf
http://epubs.cclrc.ac.uk/work-details?w=50089
http://public.ccsds.org/publications/archive/644x0b3.pdf
https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-Users-Guide_20110222.pdf
https://bytebucket.org/jhove2/main/wiki/documents/JHOVE2-Users-Guide_20110222.pdf

106 Grammar-Based Specification doi:10.2218/ijdc.v7i1.217

Powell, A.W., Beckerle, M.J., & Hanson, S.M. (2011). Data Format Description
Language (DFDL) v1.0 Specification. Report of the Open Grid Forum. Retrieved
from www.ogf.org/documents/GFD.174.pdf

Rentz, D. (2008). Documentation of the Microsoft Excel File Format, Excel Versions
2, 3, 4, 5, 95, 97, 2000, XP, 2003. OpenOffice.org. Retrieved from
http://sc.openoffice.org/excelfileformat.pdf

Underwood, W. (2009). Extensions of the UNIX file Command and Magic File for
File Type Identification. Technical Report ITTL/CSITD 09-02 Georgia Tech
Research Institute. Retrieved from http://perpos.gtri.gatech.edu/publications/TR
%2009-02.pdf

Underwood, W. & Laib, S. (2011). Attribute grammars for validating chunk-based
binary file formats. ICL/ITDSD Working Paper, Georgia Tech Research Institute
(GTRI), USA. Retrieved from
http://perpos.gtri.gatech.edu/publications/index.htm

The International Journal of Digital Curation
Volume 7, Issue 1 | 2012

http://perpos.gtri.gatech.edu/publications/index.htm
http://perpos.gtri.gatech.edu/publications/TR%2009-02.pdf
http://perpos.gtri.gatech.edu/publications/TR%2009-02.pdf
http://sc.openoffice.org/excelfileformat.pdf
http://www.ogf.org/documents/GFD.174.pdf

	Introduction
	Binary File Formats
	Families of Binary File Formats

	Context-Free Grammars and Attribute Grammars
	Attribute Grammars

	Attribute Grammars for Binary File Formats
	A Recursive Descent Parser for Binary File Format Grammars
	Generating Parsers for Binary Formats with ANTLR
	Validation of File Formats
	Semantic Correctness
	Related Research
	Conclusion
	Acknowledgements
	References

