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Abstract

Reliably building and maintaining systems across environments is a continuing 

problem. A project or experiment may run for years. Software and hardware may 

change as can the operating system. Containerisation is a technology that is used in a 

variety of companies, such as Google, Amazon and IBM, in addition to scientific 

projects to rapidly deploy a set of services repeatably. Using Dockerfiles to ensure that 

a container is built repeatably, to allow conformance and easy updating when changes 

take place, are becoming common within projects. It's seen as part of sustainable 

software development. Containerisation technology occupies a dual space: it is both a 

repository of software and software itself. In considering Docker in this fashion, we 

should verify that the Dockerfile can be reproduced. Using a subset of the Dockerfile 

specification, a domain specific language is created to ensure that Docker files can be 

reused at a later stage to recreate the original environment. We provide a simple 

framework to address the question of the preservation of containers and its 

environment. We present experiments on an existing Dockerfile and conclude with a 

discussion of future work. Taking our work, a pipeline was implemented to check that a 

defined Dockerfile conforms to our desired model, extracts the Docker and operating 

system details. This will help the reproducibility of results, by creating the machine 

environment and package versions. It also helps development and testing by ensuring 

that the system is repeatably built and that any changes in the software environment can 

be equally shared in the Dockerfile. This work supports not only the citation process, 

but also the open scientific one by providing environmental details of the work. As a 

part of the pipeline to create the container, we capture the processes used and put them 

into the W3C PROV ontology. This provides the potential for providing it with a 

persistent identifier and traceability of the processes used to preserve the metadata. Our 

future work will look at the question of linking this output to a workflow ontology, to 

preserve the complete workflow with the commands and parameters to be given to the 

containers. We see this provenance as useful within the build process to provide a 

complete overview of the workflow.
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Introduction

Reliably building and maintaining systems across environments is a continuing 

problem, as a project or experiment may run for years. Software and hardware may 

change, as can the operating system. When a paper is written, the software, in addition 

to its environment and parameters, may not be fully described, contributing to problems 

with reproducibility. Various approaches are suggested to tackle this, such as providing 

virtual machines, with the full installations and containers, with the software described.

Containerisation is a technology that is used in a variety of companies, such as 

Google, Amazon and IBM, and scientific projects to rapidly deploy a set of services 

repeatably.  The long-term science archives of the SKA are designed to store data for 50 

years, or the lifetime of the SKA. What is not defined is how the software used to 

process the data and create the science data objects might be preserved to show the 

processes and version used at a particular moment.

Software containers, virtualised processes running within an operating system, 

provide an alternative method of glossing the contained software and processes. 

Running within a jailed environment directly on a host environment, containers have 

become popular as a method of virtualising services. Docker1 is currently the dominant 

container project.

As the Docker project is adopted into workflows, it is being used to publish their 

construction and to provide the environments to repeat experiments and show 

parameters. Though this provides the raw data to re-run an experiment, containerisation 

technology occupies a dual space: it is both a repository of software and it is software 

itself. In considering Docker in this fashion, we should verify that the container can be 

reproduced, that the Dockerfile is linked and its original environment is recorded.

We present related work before discussing our framework: beginning with the 

preservation of the Dockerfile, the container’s provenance, and capturing the build 

environment. The pipeline is run as part an experiment in the Integration Prototype for 

the Square Kilometre Array (SKA). We discuss future work before concluding. Our 

contribution is showing the workflow to create the Docker container and linking it to a 

scientific workflow.

Related Work

The Recomputation Manifesto (Gent, 2013) argues for the use of virtual machines to 

contain software artefacts for future reproducibility. Maintaining the virtual 

environment also requires having software to run it again, and the hypervisors used to 

run the Virtual Machine provide sandboxes to limit access the underlying hardware.

Kuzak (2015) describes the use of containers within sustainable software processes. 

The Bioinformatics field uses Docker as a method of reliably building pipelines that 

may require older software versions (Di Tommaso, 2015). Boettiger (2015) argues for 

the project’s use in the reproducibility, prevention of code rot, and documentation for 

how a system is built.

In Radio Astronomy, Square Kilometre Array (SKA) precursor projects, such as the 

Low Frequency Aperture Array (LOFAR) (Molenaar, 2014) and Meerkat telescopes, use 

1 The Docker Project: https://www.docker.com/
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Docker containers for their pipelines. The SKA South Africa team have released Kliko, 

a manager for input and output parameters that can be loaded within a Docker container, 

but this assumes that the process runs in one container.

The Smart Container ontology (Huo, Nabrzyski and Vardeman, 2015) links the 

Dockerfile to the container, but does not look at the feasibility of preservation through 

migration, or linking this as a citable object. Our work develops the preservation aspect 

and provides a provenance of the processes employed to create the container and from 

which the container is created.

A Framework for Docker Containers

Unlike other container projects, such as LXC2 or Rkt3, Docker provides two forms of 

providing metadata to build the system: Dockerfile or the Docker Composer tool.  Our 

work focuses on the Dockerfile, as it:

‘...serves not only as the recipe for Docker to build your image but as a 

comprehensive description of the complete environment your software 

requires to be able to run’ (Haines and Jay, 2016).

Dockerfiles are being used as part of experimental notebooks and to share the 

software. Using these files ensures that a custom container is built repeatably, to allow 

conformance and easy updating when changes take place. This is becoming common 

within projects and pipelines (Kuzak, 2015). Haines and Jay (2016) associate digital 

object identifiers with the container for citation purposes.

Placing the Dockerfile in version control follows good software engineering 

practices (Matthews, McIlwrath, Giaretta and Conway, 2008) and provides a history 

through versioning. Our work builds on this by looking at preservability aspects of the 

Dockerfile and container, whilst providing a provenance for the processes used to build 

the container.

We present a framework that builds on existing practice to begin considering the 

container as a Research Object, following (Bechhofer et al., 2013). Current practice sees 

the Dockerfile as a recipe for the installation, or providing a link between the container 

and Dockerfile. Our approach links these steps together and also provides a provenance 

of the build environment, treating the container as software and a container, and allows 

for inference upon the described files to see if software and system policies are being 

maintained.

We derive the properties of software composition, provenance and ownership from 

Matthews, Shaon, Bicarregui, and Jones (2010) in a given Dockerfile and processing 

pipeline. We add the container environment of the container and workflow to our 

framework in Table 1.

2 LXC: https://linuxcontainers.org/
3 Rkt: https://coreos.com/rkt/
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Table 1. Docker container properties.

Container Properties Definition

Software composition  Description of the components in the 

container

Provenance and ownership  Processes used to build the container

 The maintainer of the Dockerfile

Container environment  The environment used to construct the 

container

Workflow  The workflow with the configuration details 

for the pipeline

The software composition is not only the description of the components, but also the 

commands defined by the metadata and its maintainer. The owner of the file and 

container may be two different entities: one being an individual, the other an 

organisation or project. We also capture the environment in which the container was 

built.

As a part of the pipeline to create the container, we capture the processes used and 

put them into a file using the W3C PROV (Lebo, 2013) ontology. Provenance is defined 

“as a record that describes the people, institutions, entities, and activities involved in 

producing, influencing, or delivering a piece of data or a thing”4. As argued, the 

Dockerfile provides the entities to make the software in the container and the 

consideration of the entities and processes used to make the container itself.

An automated build system, such as Jenkins or Travis CI, can be used to transform 

the metadata file into the container system, tag it and store it in the repository. Though 

the build system provides a provenance of the commands given to it, it cannot capture 

the environment used if the machine uses a distributed build across slave machines. The 

provenance can be used not only to provide the provenance, but also to infer the 

integrity of the machines as social entities running the commands.

Software Composition

Using a subset of the Dockerfile reference5, a domain specific language is created to 

ensure that Dockerfiles can be reused at a later stage to recreate the original 

environment.

Our focus is on the operating system, maintainer details and the package versions 

required to allow for the preservation of the information for a migration to a different 

system and to allow the exact packages to be built and reused. This is done to limit the 

chance of the environment changing the performance of the software.

The initial model is to extract the operating system name and version and the 

packages from the Dockerfile and to mark these up within the Dockerfile namespace. 

The operating system is extracted from the FROM command to check that the operating 

system name is defined and that a version is installed. The Docker specification allows 

4  W3 - Provenance: https://www.w3.org/TR/2013/REC-prov-dm-20130430/#dfn-provenance 
5  Dockerfile reference: https://docs.docker.com/engine/reference/builder/
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for the operating system version to be defined, such as 16.04 for Ubuntu, or to have the 

keyword ‘latest’ to install the latest version. Both install the image of the operating 

system but the use of ‘latest’ harms repeatable builds and the container as a research 

object, as the latest version may be different across installations over time.

The maintainer details are represented using the Friend of a Friend (FOAF) 

namespace. The name and mailbox details can be extracted from the MAINTAINER 

command and placed into the graph.

The software package details are added to the graph so that dependencies can be 

inferred across other containers.

Provenance and Ownership

The Functional Requirements for Bibliographic Records (FRBR) ontology is also used 

to provide a link between the container and the Dockerfile, instead of PROV Agent. The 

Group 1 and Group 2 options are used to link the artefacts together and the people who 

are involved in the process.

Using FRBR provides two senses of ownership: the maintainer of the metadata file 

and the organisation that owns the container. In a distributed project, the two may not be 

the same entity, or the maintainer may work for another institution, such as a university 

or company, that is distinct from the project identity.

Container Environment

The machine environment on which the container is created is recorded as part of the 

workflow. The version of the Go language and the underlying operating system details 

are captured, providing further information about the environment that built the 

container. As the pipeline knows the Dockerfile and the container it is to build, we can 

provide a provenance between the Dockerfile and that particular container at that 

moment.

This provides a framework to address the question of the preservation of containers 

and its environment, storing it as a file. Capturing the machine environment and 

package versions helps development and testing by ensuring that the system is 

repeatably built and that any changes in the software environment can be equally shared 

in the Dockerfile. This work supports not only the citation process, but also the open 

scientific one by providing environmental details of the work.

Capturing the processes also provides information that can be used to invite further 

questions about the underlying system and people involved in the production of the 

container.

This provides the potential for giving it a persistent identifier and traceability of the 

processes used to preserve the metadata. Building on this allows not only the 

preservation of the particular container, but all the metadata files to be queried. This 

supports the use for publications and the science support but also the engineering 

processes.

Workflow

The SKA is reviewing various options for creating the workflow. The SKA South Africa 

team created Kliko6, a Scientific Compute Container specification, to capture the 

6 Kliko: http://kliko.readthedocs.io/en/master/introduction.html 
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parameters being used within a container. Parsing the Kliko file and linking it to the 

container graph, provides a method of viewing the linked containers and also the 

processes linked to them. We must be flexible enough either to link one container to a 

workflow, or many containers for one workflow.

Working with the SKA Integration Prototype

Methodology

A build and deployment system was created as the outcome of our work with the SKA 

Science Data Processor (SDP) Integration Prototype team, using machines within the 

Oxford test bed.

The driving purpose of the build system is the repeatable build of machines: to 

install the operating system with a standard user and starting state that allows for 

connections to a central Docker registry instance. Although this creates a known base 

state, we are still challenged by the ingestion of software into the central registry from 

geographically spread out and heterogeneous SDP development teams.

Github is used by the SDP development teams. We experiment with using 

Continuous Deployment pipelines to ensure that the Dockerfile could be automatically 

built into a Docker container and stored, as shown in Figure 1. Using a build tool such 

as Jenkins provides some metadata that is stored, however this is limited.

Figure 1. Activity Diagram for the Framework Pipeline.

Rather than extracting the metadata outside of the automated pipeline, we derive it 

within the pipeline as the containers are being built, tagged and stored and also capture 

the environment. Attaching this process to a particular branch of the version control 

system forms a discrete, automated pipeline per container and Dockerfile to create the 

local metadata. The aim is to place provenance as part of the automated software 

processes instead of it being an adjunct process or reconstructed at a later stage, such as 

from log files when data is processed.

Two Jenkins projects are set up: one to retrieve the Dockerfile from version control, 

and the second to run the build of the container on success of the first one. The latter 

runs the Python scripts (Emsley, 2016) to write the build process and software metadata 

files as part of the project.
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An instance of the Jenkins server was set up to build an existing Dockerfile for the 

OSKAR7 project. A Freestyle project is set up to download and install the Dockerfile 

from version control and is linked to a build project called Continuous Build that is 

triggered when the file is installed correctly.

The two generated files provide a snapshot of the container at the moment. The 

software graph, as shown in Figure 2, supports the browsing of the packages contained 

for installation. The desired outcome would be the ability to extract the version number 

of the package from the file to ensure that a repeatable build can be constructed, instead 

of assuming that the package does not change between installations. Over long running 

projects build systems may change, so the metadata should support migration from one 

system to another without losing precision of installation. This does place an onus on 

the package and software maintainers to ensure that versions numbers are put into the 

software.

Figure 2. Graph of the software generated.

The process is not only about providing support for future systems, but may also 

support a project’s existing software practices and policies. Although the SKA is still 

defining processes, an operating system has been chosen. If the metadata is being used 

for integrity of the container, as software it should also follow similar guidelines to the 

software development process. For the SKA, Ubuntu is chosen as the operating system, 

using Long Term Support builds. Our pipeline would prevent builds where an operating 

system does not have a version or if the version is not one of the accepted versions and 

where a maintainer is not provided. In so doing, we use the provenance to not only  

support potential migration of software but to also support inference for the project 

software processes being followed.

7 OSKAR: http://oskar.oerc.ox.ac.uk/ 
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Figure 3. Graph of the process, entities and links in the container generation process.

Providing the entities, environments and processes in the build process, as in Figure 

3, in the timestamped file develops a versioned history. The environment information 

for the slave machine is captured for reference, instead of only preserving the container 

and its version number. As preserving entire machines may be out of scope for a project, 

the information about the environment and tools is kept. Capturing both tools and 

environment provides not only information about the process but also allows it to be the 

recipe for rebuilding the container and its components.

This data can then be used to interrogate the artefacts and entities of the build 

system. The generated file can be linked to the stated scientific workflow using the 

Kliko specification to a container that can then be linked to its own build process 

(Figure 4). The metadata extracted links the container to the maintainer, who may be 

different from the organisation.

Figure 4. Graph of a Kliko Workflow specification.

Discussion

The workflow specification for the larger project has not been decided and there are 

various options. The Kliko metadata file, developed in South Africa, allows us to extract 
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the parameters and the contained processes. It does not account for any logged errors. 

Querying the workflow presents a combinatorial issue for much larger pipelines, larger 

than the ones that we have been exposed to through various sub-projects. 

Identifying those responsible for software at different levels can be challenging. 

Moving from the organisational links, the graphs allow us to discover the maintainers 

from the workflow, allowing their work and software to be cited.

Although we may not achieve the ideal state of the container and metadata being a 

complete Research Object as we do not describe how the data is being used, we do 

however describe the parameters given to the contained processes.

The reliable use of time becomes a key object in storing the software so that the 

relevant metadata can be queried and the flow of information is captured correctly, as 

maintainers may change over a long running project and we should support historical 

queries to determine the provenance of the container but to also provide support for 

citation of the software.

Using this latter graph, we approach the use of provenance to infer integrity of the 

pipeline and the system. Over the lifetime of a project, processes change and are 

updated. These graphs may also be used to view the status of software and whether it is 

following mandated procedures, such as defining the correct operating system or 

inferring if old libraries are being used.

As automated processes become increasingly linked together to create and update 

software, it becomes more complicated to maintain the entities and artefacts in the 

pipeline.

Future Work

Our future work will refine the formal semantics of our presented model and any 

required extensions, such as the software citations where the maintainer may not be the 

original developer. Refining the formal semantics will help us to develop more powerful 

queries and inferences.

We see this work as supporting the integrity of the build environment through 

querying the files and inferences to show the origins and trustworthiness of the 

containers. Reliable archiving and provenance supports the reputation of the science 

project through maintenance of the software’s integrity as well as processes for the 

software that supports the science. Having shown that this work can be implemented as 

part of the deployment process, we should look at its integration with the data archiving 

and operations processes.

A Docker-Compose file can be used to compile multiple containers and to build 

them with a configuration for each part. Although not used in the Integration Prototype, 

it provides a second model for building complex applications with more complex 

workflows to be modelled. Although the parameters presented at the moment are 

relatively simple, combinations of these will provide challenges for discoverability for 

reproducible research or finding those who should be cited.

Conclusion

We introduce existing work that uses Dockerfiles as part of the reproducible software 

output. Our work builds on this by linking the versions of the Dockerfile to the relevant 
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container, extracting the entities and environments: machines, organisations, and people 

involved, and linking to a workflow file.

This allows the container to be built on another machine and the experiment to be 

re-run. It supports the data archiving by recording the recipe for recreating the 

experiment but also how that recipe is built and its parameters.  As the Integration 

Prototype is at early stages, the amount of data that can be used is small so a challenge 

is scaling this to larger deployments.

Our focus shows how a container can be built within a Continuous Deployment for 

archiving to preserve both software and creation environments and be linked to 

workflow metadata. This supports publication and citation efforts.

From these files, inferences may be made upon the artefacts in the automated build 

process, supporting the process and its artefacts and also supporting any existing 

software policies. This provokes questions regarding the increasing use of machines as 

social entities. Building on the existing processes and ideas for preserving the container, 

we demonstrate a method of preserving the process and also linking this to a workflow 

file provided by another process.

Using SPARQL queries, we are able to map parameters to the container used but are 

aware that we are using a small dataset at present. This also supports software metadata 

archiving and the use of containers as repositories. Providing the metadata provides 

transitive links between the expression of the container and the container itself, allows 

us to view the Docker container as software that may also be preserved to support 

sustainability for the project. This metadata provides a context to the artefact as an 

object within the research flow, implying that it is more than a software object but an 

integral part of processes.
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