
IJDC | General Article

Revealing the Detailed Lineage of Script Outputs Using

Hybrid Provenance

Qian Zhang
University of Illinois at Urbana-Champaign

Yang Cao
University of Illinois at Urbana-Champaign

Qiwen Wang
University of Illinois at Urbana-Champaign

Duc Vu
University of Illinois at Chicago

Priyaa Thavasimani
Newcastle University

Timothy McPhillips
University of Illinois at Urbana-Champaign

Paolo Missier
Newcastle University

Peter Slaughter
University of California, Santa Barbara

Christopher Jones
University of California, Santa Barbara

Matthew B. Jones
University of California, Santa Barbara

Bertram Ludäscher
University of Illinois at Urbana-Champaign

Abstract

We illustrate how combining retrospective and prospective provenance can yield scientifically meaningful

hybrid provenance representations of the computational histories of data produced during a script run. We

use scripts from multiple disciplines (astrophysics, climate science, biodiversity data curation, and social

network analysis), implemented in Python, R, and MATLAB, to highlight the usefulness of diverse forms

of retrospective provenance when coupled with prospective provenance. Users provide prospective

provenance, i.e., the conceptual workflows latent in scripts, via simple YesWorkflow annotations,

embedded as script comments. Runtime observables can be linked to prospective provenance via

relational views and queries. These observables could be found hidden in filenames or folder structures,

be recorded in log files, or they can be automatically captured using tools such as noWorkflow or the

DataONE RunManagers. The YesWorkflow toolkit, example scripts, and demonstration code are

available via an open source repository.

Received 1 February 2017 ~ Revision received 24 April 2018 ~ Accepted 24 April 2018

Correspondence should be addressed to Qian Zhang, School of Information Sciences (iSchool), UIUC, 112 LIS,501

E. Daniel Street, Champaign IL 61820. Email: zhangqian06@gmail.com

An earlier version of this paper was presented at the 12th International Digital Curation Conference.

The International Journal of Digital Curation is an international journal committed to scholarly excellence and

dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the

University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution

Licence, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation

2017, Vol. 12, Iss. 2, 390–408
390 http://dx.doi.org/10.2218/ijdc.v12i2.585

DOI: 10.2218/ijdc.v12i2.585

http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://www.ijdc.net/
mailto:zhangqian06@gmail.com

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 391

Introduction

Scripts are widely used to automate scientific workflows. Provenance support for script-

based workflows is expected to promote interpretation, openness, and reproducibility of

compute- and data-intensive studies (Freire, Fuhr and Rauber, 2016; Freire, Koop,

Chirigati and Silva, 2014; Gadrud, 2013; Tilmes, Yesha and Halem, 2010). However, a

gap often exists between the provenance that comes with a published dataset and the

promised science-level explanations (Freire, Fuhr and Rauber, 2016). Part of the

problem is that a retrospective provenance record (e.g., the events observed during the

execution of a script on a particular input dataset) is only one of the elements needed to

elucidate the process occurring during a computational experiment. Equally important is

the general specification of the overall workflow. Following the nomenclature proposed

by Zhao, Wilde and Foster (2006) and adopted in McPhillips et al. (2015b), we refer to

the latter as prospective provenance, to distinguish it from (but also relate it to) what is

commonly called retrospective provenance. Observables that contribute to retrospective

provenance include the location, name, and contents of files read or written by a script,

data created or updated during execution, parameter settings, and system-level

information such as operating system and software versions, timestamps, etc.

Prospective provenance, on the other hand, describes a conceptual high-level overview

of the process used in a study. Computational workflow systems such as Kepler,

Taverna, Pegasus, Restflow, or Vistrails (Ludäscher et al., 2006; Oinn et al., 2004;

Deelman et al., 2005; Tsai et al., 2013; Bavoil et al., 2005) provide the abstraction form

of a directed graph, where computational steps are connected via dataflow channels. For

script-based workflows, one could consider the script itself a form of prospective

provenance, albeit one in which the underlying conceptual view of the dataflow

structure may be obscured by details of the implementation. The motivation for

developing YesWorkflow (YW) has been to allow users easily to expose high-level

workflow models that are latent in scripts, using simple user annotations embedded as

script comments (McPhillips et al., 2015b). We show here that the workflow models

declared by users and extracted via the YW toolkit can be augmented and enriched by

retrospective provenance observables, yielding various forms of hybrid provenance

(McPhillips et al., 2015a; Pimentel et al., 2016). By hybrid provenance we mean a

combination of prospective and retrospective provenance, where fragments of workflow

execution traces with structures provided by the user-declared YW models (prospective

provenance) are filled in with script execution details from one or more sources of

runtime observables (retrospective provenance), as shown in Figure 1.

Building on prior work (McPhillips et al., 2015b; McPhillips et al., 2015a; Pimentel

et al., 2016; Cao et al., 2016a; Murta et al., 2014; Cao et al., 2016b; Bowers et al., 2012;

Cuevas-Vicenttin et al., 2015), we demonstrate how multiple hybrid provenance

representations and products can be derived from a combination of prospective and

retrospective provenance sources. We argue that the resulting hybrid views, queries, and

visualizations are useful not only for documenting and explaining script-based scientific

workflows to others, but also for enabling researchers to query and explore the

derivation history of the data products yielded by script execution while the broader

computational studies are still underway. The techniques and examples discussed below

are available as executable demonstrations via an open source repository (Zhang et al.,

2017).

IJDC | General Article

392 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

Prospective and Retrospective Provenance Elements

We first describe the tools we use to capture prospective and retrospective provenance,

respectively, followed by the approaches to combine them to enable hybrid provenance

query capabilities.

Modelling Scripts as Workflows with YW Annotations

YesWorkflow (YW) (McPhillips et al., 2015a; 2015b) aims to provide researchers who

develop script-based workflows with many benefits of scientific workflow systems.

Script authors can embed YW annotations (@BEGIN, @END, @IN, and @OUT) within the

comments of their scripts, thereby declaring relevant computational steps and the

dataflow between them. The resulting workflow model provides a high-level

prospective provenance graph that can be visualized and queried to reveal dataflow

dependencies (Figure 1, left). Since prospective provenance is created via user-provided

YW annotations, the appropriate level of modelling detail is controlled by the users

themselves.

Reconstructing Provenance with YW-Recon

The YesWorkflow model of a script can be augmented with runtime observations to

yield hybrid provenance information. Some of the retrospective provenance from script

runs can easily be reconstructed using resource URI template declarations (@URI):

provided that users name and organize their files, folders, and other resources

systematically, YW can use declared URI templates to discover the actual files that were

read or written at runtime (McPhillips et al., 2015a). For example, a URI template such

as the following:

@OUT Image @URI file:run/raw/{cassetteID}/{sampleID}/e{energy}/image_{no}.raw

denotes that raw image files are found within subfolders of run/raw/, relative to the folder

in which the script was executed, and are organized first by cassette ID, then by sample

ID, beam energy, and finally by image number. After script execution, by finding and

matching the file paths to actual resources using the URI templates, YW can link the

conceptual workflow entities – the templates that declare the layout of input and output

resources on the file systems – with observations made about the script run, in this case

the actual folders and files created during the run.

In addition, or as an alternative to the use of URI templates, a script author can

employ user-defined log files to capture runtime provenance observables at any level of

granularity that is required to support the desired provenance queries. Using log files

written by a script, YW can then harvest fine-grained retrospective information, e.g., at

the level of single record within a file, or specific field(s) within a record. Because the

structures of log file entries are declared via @LOG template statement, the content of log

entries can be chosen to maximize human readability of logs, while at the same time

providing YW with machine-readable parsed information. Similar to URI templates, log

templates are associated with other (here: @OUT) YW annotations, cf. Figure 6a.

Moreover, an output resource name can be associated with multiple log entry templates.

Each log entry template may include one or more template variables that distinguish

multiple files (or other data sources) written by a script in a particular code block. As

IJDC | General Article

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 393

with URI template variables, log template variables are enclosed in curly braces.

Following a script run, YW will use these log templates to discover the actual variable

values written during the run and harvest the information from the log entries, cf. Figure

6b. The variables in the templates reveal runtime values of other variables annotated

with @in or @out in the script. In this way, YW is able to support reports of the results of a

script execution at various levels of granularity, e.g., at the script-, data-, file-, record-,

field-, or function-level, provided prospective provenance declarations have been

provided for each of those levels.

Figure 1. Prospective provenance (left) and retrospective provenance (right) are combined to

create different hybrid provenance products (center).

IJDC | General Article

394 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

Recording File-Level Provenance with DataONE RunManagers (RM)

DataONE1 provides a RunManager2 provenance recording and management system for

MATLAB and R script executions. The RunManagers overload and thus intercept file

I/O operations to automatically capture runtime observables at the file level. The

RunManager API provides functions3 for capturing, searching, archiving, and sharing

provenance. DataONE provides two RunManager implementations: the recordr R

package4 and the MATLAB toolbox5. The provenance captured during a script execution

includes information about the script that was run, the files that were read or written,

and details about the execution environment at the time of execution. A data package

including the script itself, input files, and generated files associated with the run can

easily be published to a repository within the DataONE federation.

Code-Level Provenance Capture with noWorkflow

The most detailed retrospective provenance recorder employed in these examples is

noWorkflow (Murta et al., 2014). The noWorkflow system (NW) employs a Python

profiling library to capture fine-grained runtime provenance at the level of Python

function calls, variable assignments, and variable dependencies. The previously reported

‘provenance bridge’ (Pimentel et al., 2016) between YW and NW provenance

information is essential to some of the provenance use cases and demonstrations below

(Zhang et al., 2017).

Hybrid Provenance

Figure 1 provides an overview of our approach: A user models a workflow W using

YW-annotations embedded as script comments. In this way, the user’s conceptual

workflow model can be bundled in a language-independent way with the executable

program code6. The resulting YW model of a script constitutes a conceptual-level form

of prospective provenance. The YW tool translates these annotations into an internal

database format that can be exported as a ProvONE-compliant model (Cuevas-Vicenttin

et al., 2015), or in graph form, that can be rendered visually using Graphviz7. The

graphical rendering provides users with a high-level overview of W’s structure,

including its underlying dataflow dependencies. Queries against the YW model

(implemented, for example, in Prolog or Datalog) can then be used to retrieve the

1

DataONE: https://www.dataone.org/
2

See: https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-

API.rst
3

See: https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-

API.rst#run-manager-api
4

DataONE recordr R package: https://github.com/NCEAS/recordr
5

DataONE MATLAB toolbox: https://github.com/DataONEorg/matlab-dataone
6

YW models can also be created in separate files, e.g., during workflow design, when an executable

version of the script may not yet exist.
7

Graphviz: https://www.graphviz.org/

IJDC | General Article

https://www.graphviz.org/
https://github.com/DataONEorg/matlab-dataone
https://github.com/NCEAS/recordr
https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-API.rst#run-manager-api
https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-API.rst#run-manager-api
https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-API.rst
https://github.com/DataONEorg/sem-prov-design/blob/master/docs/PROV-capture/Run-manager-API.rst
https://www.dataone.org/

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 395

upstream lineage of any final or intermediate data product y, (i.e., the subgraph of data

and steps upstream of y in W), and to compute the downstream influence of x (i.e., the

subgraph of the data derived from x along with the derivation steps, both of which are

prospective lineage. While YW can not reveal the retrospective lineage of data on its

own, the prospective lineages can be combined with retrospective provenance from

other sources to yield partial retrospective lineages in some limited cases as

demonstrated later in the paper. The YW toolkit can exploit different sources of

retrospective provenance information (Figure 1, right), consisting of runtime-observable

events, to produce hybrid provenance (Figure 1, middle). This requires the definition of

suitable ‘bridge rules’ to establish associations between corresponding elements in the

two types of provenance. We can distinguish different kinds of runtime observables,

e.g., file-level observables from the DataONE RunManagers for MATLAB and R that

overload file-IO commands, and code-level observables, e.g., from the noWorkflow

system (Murta et al., 2014), which captures fine-grained runtime information at the

level of function calls and changes of program variables while executing a Python

script. Both the file-level and code-level runtime observables can be exploited for

powerful hybrid queries. The former is the focus of our IDCC demonstration, while the

latter has been demonstrated elsewhere (Pimentel et al., 2016). Below we discuss some

details of different ‘provenance bridges’ we have developed.

YesWorkflow–RunManager Bridge (YW-RM)

The DataONE RunMangers, i.e., R and MATLAB clients, can record a script run and

use the collected file-level provenance to populate a SQLite database, consisting of

three main tables: an execution metadata table, a file metadata table, and a tag table.

This information can be exported as a YAML file, which in turn can be joined with the

YW model to obtain a hybrid provenance graph with file level runtime observables. The

DataONE toolbox can also be used to publish data products together with their

provenance to a repository that implements the DataONE service API. For example,

individual script runs will generate a DataONE metadata package with associated

retrospective provenance. After the data package has been indexed by a coordinating

node, the logical connection can be viewed and explored via DataONE search8. This

facilitates data sharing in the community with proper attribution of results transitively

across generations of derived data products, i.e., the user can publish a DataONE-

compliant data package in OAI-ORE9 format (including the ProvONE provenance

document, the script itself, and its YW-generated workflow view) to a member node

within the DataONE federated network of member node repositories (Cao et al., 2016a).

YesWorkflow–noWorkflow Bridge (YW-NW)

Similar to the YW-RM bridge, the YW-NW bridge is used to integrate the prospective

provenance declared via YesWorkflow annotations with the retrospective provenance

captured from noWorkflow. Since noWorkflow is a provenance recorder that is capable

of capturing runtime observables at both file- and code-level, there are different bridge

rules for hybrid provenance reconstruction:

8

DataONE Search Site: https://search-sandbox-2.test.dataone.org/#data
9

Open Archives Initiative Object Reuse and Exchange

IJDC | General Article

https://search-sandbox-2.test.dataone.org/#data

396 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

1. YW-NW bridge at the file level: Similar to the YW-RM bridge approach,

which can select file-level trace information generated by NW, and export this

information from the noWorkflow SQLite database in a YAML format. These

file-level observables in YAML can then be joined with YW prospective

information to reconstruct hybrid provenance that can be queried by YW model,

thus providing a simplified YW-NW bridge with file-level granularity.

2. YW-NW bridge at the code level: The “Yin and Yang” approach of (Pimentel,

et al., 2016) combines a YW model with the retrospective details captured by

noWorkflow at the program variable-level. In Figure 2 we employ YW model to

illustrate how the YW-NW bridge has been prototypically implemented. In the

YW model, green boxes represent compute steps and yellow nodes represent

data flowing between steps. This YW-NW bridge matches variables defined in

YW annotations and those in NW, to link Python variable values captured by

noWorkflow with data elements declared in YW. With this bridge, we are able to

answer hybrid provenance queries of specific data such as “For a given output

value of a variable in an execution of script, what are the values of the inputs

and the associated scientific operations and steps?”. Similarly, we can create

data lineage visualizations that combine both prospective and retrospective

provenance information, while preserving the simplicity of YW graphs. Below

we use a concrete example for illustration, i.e., the LIGO use case.

Figure 2. Workflow depicting how the YW-NW bridge from (Pimentel, et al., 2016) works.

Example Use Cases

In this section we present four use cases. The four script-based workflow use cases

cover multiple disciplines (astrophysics, climate science, biodiversity data curation, and

social networks) and are implemented in different programming languages (Python, R,

and MATLAB) and query languages (SQLite and XSB-Prolog), and highlight the

usefulness of diverse forms of retrospective provenance when combined with

prospective provenance. In a nutshell, we demonstrate three retrospective provenance

capturing systems: (a) YW-recon, a lightweight provenance system for reconstructing

provenance, (b) the DataONE MATLAB RunManager, and (c) noWorkflow, for

capturing Python execution provenance. The four use cases are:

IJDC | General Article

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 397

 Twitter use case: A Python script in social media analytics, whose hybrid

provenance information is captured combining YW and NW at the file level.

 C3C4 use case: A MATLAB script in climate science, whose hybrid provenance

information is collected from YW and the DataONE MATLAB RunManager.

 LIGO use case: A Python script in astrophysics, whose hybrid provenance

information is obtained by combining YW and NW at the program variable (i.e.,

code) level.

 SPNHC use case: A Python script in biodiversity data curation, whose hybrid

provenance information is obtained by combining YW and log file information,

similar to YW-recon.

For each example, by using the YW prospective provenance modelling, a researcher

can visualize a YW-annotated script as a ProvONE-compliant workflow graph.

However, data dependencies between script outputs and inputs may be hard to trace

visually, especially for complex scripts and fine-grained provenance graphs. In Cao et

al. (2016b) and Zhang et al. (2017) we demonstrated how to query different types of

provenance graphs, i.e., prospective and hybrid graphs. We demonstrated the

prospective provenance created by YW and the retrospective provenance collected by

various provenance capturing systems, or a combination of several together, to answer

queries that cannot be answered solely by prospective provenance or retrospective

provenance. More specifically, the following prospective (Q1-Q4) and hybrid queries

(Q5-Q6) can be supported for all our four use cases:

 Prospective queries:

◦ Q1: Render the workflow (sub)graph upstream of a given data product D,

where D can be any one (output or intermediate) data element of the YW

model of the script;

◦ Q2: List the script inputs that are upstream of a given data product D;

◦ Q3: Render the workflow (sub)graph downstream of a particular script input;

◦ Q4: List the outputs that depend on / are downstream of a particular script

input;

 Hybrid queries:

◦ Q5: Render the hybrid workflow (sub)graph (reconstructed prospective

model augmented by retrospective provenance) that is upstream of a given

data product D;

◦ Q6: Render the hybrid workflow graph (reconstructed prospective model

augmented by retrospective provenance) with all runtime observables.

Use Case: Twitter Sentiment Analysis

Sentiment analysis has been very popular in social media analytics over the past few

years. In this example, we describe a simple script implemented in Python that uses the

IJDC | General Article

398 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

NLTK10 library to assign sentiment scores to tweets. The script is commented using YW

annotations and the conceptual workflow (prospective) graph is visualized by YW in

Figure 3a. Figure 3b shows the downstream prospective influence subgraph for the data

element ‘PositiveCount’. The green box represents a computation step and the yellow

represents a data element. Both graph query results shown in Figure 3 can be obtained

by querying the YW model using logic rules (e.g., in XSB-Prolog) without the need to

first execute the Python script. The script can be further investigated via more advanced

retrospective and hybrid queries; see the GitHub repository11 for additional details.

a) b)

Figure 3. Twitter example (sub)workflows: (a) complete workflow graph; (b) Q3 workflow

subgraph (based on YW-perspective provenance) that renders downstream of the data

element “PositiveCount”.

10

Sentiment analysis: http://www.nltk.org/howto/sentiment.html
11

Twitter use case GitHub repo: https://github.com/yesworkflow-org/yw-idcc-

17/tree/master/examples/Twitter

IJDC | General Article

https://github.com/yesworkflow-org/yw-idcc-17/tree/master/examples/Twitter
https://github.com/yesworkflow-org/yw-idcc-17/tree/master/examples/Twitter
http://www.nltk.org/howto/sentiment.html

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 399

Use Case: C3C4

In this section, we use a DataONE example to demonstrate hybrid provenance and

hybrid queries. The example MATLAB script produces C3/C4 (Carbon) soil maps for

North America using average rain and air temperature monthly data, e.g., from the year

2000 to 2010. An earth scientist uses YW annotations to mark up the script and thereby

expose the underlying prospective provenance graph that is inherent in the script (see

Figure 4a). Note that a URI template is used for the input and output data files to

specify the file name and path metadata. For example, the data “mean_precip” includes

three template variables (“start_year”, “end_year”, and “month”) in curly braces. It is

easy to see from Figure 4a that there are three data inputs (“mean_precip”,

“mean_airtemp”, and “SYNMAP_land_cover_map_data”) and three output data

elements (“C3_fraction_data”, “C4_fraction_data”, and “Grass_fraction_data”),

respectively. Then, a provenance query can be asked based on the prospective

provenance harvested by YW, e.g., “Show me the workflow graph upstream of the data

element Grass_fraction_data”. The answer to this query is shown in Figure 4b, which

indicates that the “Grass_fraction_data” does not depend on the first two inputs

(“mean_precip” and “mean_airtemp”) but may depend on only one input data, i.e.,

“SYNMAP_land_cover_map_data”. In this way, a dataflow path from a node x to y

represents a possible data dependency of y on x. Conversely, the absence of a path from

x to y indicates that y does not depend on x, according to given YW model.

By using the MATLAB RM tool to record a run of this script, the user can not only

obtain the expected execution results, but also capture file-level retrospective

provenance information. The hybrid provenance can be derived by joining the YW

model and RunManager retrospective provenance via YW-URI templates (i.e., using a

YW-URI-RM file level bridge). After obtaining the derived hybrid provenance

information, we can ask hybrid queries. For example, (1) Show the complete hybrid

graph at file level where the prospective graph is augmented and enriched by all file-

level runtime observables in retrospective provenance; or (2) Given a data item

“Grass_fraction_data”, show the reconstructed upstream augmented provenance graph

in context of the YW workflow graph.

The generated reconstructed (sub)graphs containing derived hybrid provenance

information are shown in Figure 4c and Figure 4d, respectively. From Figure 4c, we can

see that when the script was running, it has actually read 24 (12*2) data files containing

monthly rain and air temperature data files, plus one additional land map file, resulting

in a total of 25 input data files, spread across the three data elements in the YW model

(Figure 4a). We also see that the script has written three files to the outputs folder.

Use Case: LIGO

LIGO Open Science Center detected gravitational waves from a binary black hole

merger on September 14, 2015, and called the event GW150914 (LSC, 2015). With

strain time series data from GW150914 collected by Detector H1 from the LIGO

Hanford Observatory and Detector L1 from LIGO Livingston Observatory, electronic

engineers write a Python script to perform signal processing tasks that eliminate the

disturbances from the local source and visualize the gravitational wave in spectrogram

and audio form. Figure 5a depicts the YW subgraph upstream of variable

“strain_L1_whitenbp” in YW prospective model. Figure 5b and 5c both demonstrate the

reconstructed hybrid workflow graph upstream of the same data, whose differences lie

in that the former was implemented via YW-recon-URI template at the file-level while

IJDC | General Article

400 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

the latter YW- NW bridge at both the file and the code level. In the hybrid graph of YW-

NW bridge at program variable level (Figure 5c), the black box represents a parameter

variable associated with its value, and the orange box for an input/output data associated

with its value.

a)

b)

IJDC | General Article

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 401

c)

d)

Figure 4. C3C4 example workflows: (a) complete workflow graph (with YW-URI templates);

(b) Q1 workflow subgraph (based on YW-perspective provenance), upstream of the data

element “Grass_fraction_data”; (c) Q6 complete hybrid graph (based on YW-URI-RM at the

file level): the reconstructed prospective model augmented by retrospective provenance with all

file-level runtime observables; (d) Q5 hybrid subgraph (based on YW-URI-RM at file level),

upstream of the data element “Grass_fraction_data”.

IJDC | General Article

402 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

 YW-NW bridge approach can not only enable queries that can be answered by YW, but

also answer queries for runtime data information that can’t be answered solely by YW.

For example, the hybrid graph can show the variables and their values that are the inputs

of the step of Bandpassing, and emit the output “strain_L1_whitenbp” with value of

[8.184, ..., -0.684]. From the prospective provenance graph of YW model (Figure 5a),

both data products “strain_H1_whiten” and “strain_L1_whiten” appear as inputs

flowing into the computational step Bandpassing from which output

“strain_L1_whitenbp”. However, from the hybrid graph of YW-NW bridge at program

variable level in Figure 5c, only “strain_L1_whiten” is being bandpassed with value

[8.494, ..., 72.156] to produce the desired “strain_L1_whitenbp”, which is also self-

explanatory from their data names. This means that “strain_H1_whiten” is being passed

to and used in bandpassing, but is irrelevant to the output of “strain_L1_whitenbp”.

From another point of view, we also noticed from YW-NW bridge at file-level (Figure

5b), that two data files are being detected as input for “FN_Detector” since the

augmented prospective graph lists all actual inputs of the program that correspond to

data variables, whereas only one of the two input files for L1 detector is consumed and

thus shown within YW-NW bridge at code level (Figure 5c). The YW-NW bridge at the

code level not only records the lineage of the queried data, but also captures the data

dependency on the actual input file, i.e. at the file level.

From both the LIGO and C3C4 examples, we can see that the YW-recon approach

based on URI templates at the file-level runtime observables alone (1) can determine the

definite independency between data products; and (2) may or may not precisely define

the data dependencies. In contrast, the YW-NW bridge can generate code-level runtime

information, which once be integrated with YesWorkflow model, can capture the correct

data lineage and dependency relationships that supplement retrospective data

information for YesWorkflow models.

a) b)

IJDC | General Article

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 403

c)

Figure 5. LIGO example (sub)workflows: (a) Q1 workflow subgraph (based on YW-

perspective provenance with YW-URI templates) that renders upstream of the data

element “strain_L1_whitenbp”; (b) Q5 hybrid subgraph (based on YW-recon-URI at

file level): the reconstructed prospective model augmented by retrospective

provenance with file-level runtime observables that renders upstream of the data

element “strain_L1_whitenbp”; (c) Q5 hybrid subgraph (based on YW-NW bridge

at both file and code levels) that renders upstream of the data element

“strain_L1_whitenbp”.

Use Case: SPNHC

In this use case, we demonstrate how the YW toolkit developed by the Kurator12 team

facilitates exploration of the results of running a simple data cleaning script written in

Python (Figure 6a) on a biodiversity dataset. This script takes as input a CSV file

containing occurrence records represented in Darwin Core terms; in successive steps

validates the various fields (scientific name, authorship, and event date) of each input

record; replaces nonstandard or incorrect values for particular fields when the meanings

or intents of these input values are unambiguous; and optionally discards records

missing values for essential fields or containing incorrect or ambiguous values for

which enhancements cannot be proposed. The cleaned data set ultimately produced by

12

 Kurator: https://opensource.ncsa.illinois.edu/confluence/display/KURATOR/Kurator+Project+Home

IJDC | General Article

https://opensource.ncsa.illinois.edu/confluence/display/KURATOR/Kurator+Project+Home

404 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

the script is written to another CSV file. Each of the data validation steps in the script

writes key information about their operations into simple log files (.txt).

Figure 6. YW-log implementation for the SPNHC biodiversity data cleaning use case: (a) YW-

annotated (@out, @uri, and @log) script that declare log file, file path, and log template;

(b) YW-recon log_variable_value facts; (c) YW-rendered subworkflow graph (d) the

log file written by the script (e) log queries.

On the one hand, by analyzing the YW annotations in a script, YesWorkflow can render

a prospective provenance graph of a script to be executed (Figure 6c). On the other

hand, YW retrospective provenance reconstructions based on URI and log template

matching can assist interpreting and querying log files in terms of the structure of the

script itself. YW can answer questions about the output data set, the script run, and the

data validation, field updates, and record removal events that occurred during the data

cleaning process. Using log files easily written by such scripts, YesWorkflow can reveal

which fields in particular records were marked as suspect and why, which of these fields

were corrected, and what records were removed. YesWorkflow depends on special

comments in the script, and thus these annotations enable interpreting and querying log

files in terms of the structure of the script itself. Figure 6d and 6e depict the log file

content and log query output using URI template and extended log feature, respectively.

Conclusions and Future Work

The challenges we addressed in this paper include: (1) Most computational analyses and

workflows are conducted using scripts in different programming languages, such as

Python, R and MATLAB; (2) Retrospective provenance observables, from DataONE

RunManager (file-level), or noWorkflow (Python code-level) only yield isolated

fragments of the overall data lineage and processing history; (3) Prospective provenance

IJDC | General Article

clean_name_and_date_workflow.clean_scientific_name

initialize_run

Create the run log file

name_cleaning_log
file:name_val_log.txt

read_scientific_name

Read scientificName from local authority source

local_authority_source_scientificName_list

read_data_records

Read original dataset

record_id_data
file:record_id.txt

scientificName

authorship

other_fields

RecordID

check_if_name_is_nonempty

Check if scientificName value is present

empty_scientificNamenonEmpty_scientificName

log_name_is_empty

Log records of empty scientific name with final status as unable to validate

record_final_status

unable-to-validate_record_count

find_name_match

Find if the scientificName matches any record in the local authority source using exact and fuzzy match

match_resultmatching_methodmatching_record

log_match_not_found

Log record where no match is found in authority source final status as unable to validate

update_scientific_name

Update scientificName if fuzzy match is found

updated_scientificName

update_authorship

Update authorship if fuzzy match is found

updated_authorship

log_updated_record

Log records updating from old value to new value

log_accepted_record

Log record final status as accepted

accepted_record_count

write_data_into_file

Write data into a new file

data_with_cleaned_names
file:demo_output_name_val.csv

log_summary

Summarize on all the records

original_dataset
file:demo_input.csv

local_authority_source
file:demo_localDB.csv

b)

c)

d)

a)

e)

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 405

could be used to link and contextualize fragments into a meaningful and comprehensible

workflow, but script alone do not reveal the underlying workflow graph; and (4)

Provenance (like other metadata) appears to be rarely actionable or immediately useful

for those who are expected to provide it (‘provenance for others’). The approach we

propose for hybrid provenance in this paper consists of three steps: (1) Simple

YesWorkflow annotations allow users to explicitly reveal the workflow (prospective

provenance) that was originally implicit in scripts; (2) Prospective provenance queries

expose and test data dependencies at the workflow level; and (3) Hybrid provenance

queries situate runtime observables (retrospective provenance) in the overall workflow,

yielding meaningful knowledge artifacts. Our proposed approach integrates

comprehensible workflow graphs and customizable provenance reports for script runs,

along with data and code in scientific studies (‘provenance for self’). Using the example

scripts as a testbed, we show how the dual views of retrospective and prospective

provenance can both reveal the overall story of a script run, and also the detailed history

of particular script products. An earlier, hands-on demonstration illustrating our

approach is available via an open source repository (Cao et al., 2016b).

However what about the things YesWorkflow cannot do? – what it cannot do by

itself, and what it cannot do even in combination with the partial retrospective

provenance information from other sources – at least right now. An example of a

situation where our hybrid provenance approaches simply will not work is like this:

what would happen if the lineage of a particular data product depended on the outputs

of more than one execution of a particular upstream YesWorkflow program block when

using either of the YW-NW bridges? As to future work, besides the single script run

provenance, we are also interested in multi-run and /or multi-script executions. Multi-

run means that the same script is executed multiple times in order to compare among

different input settings or to seek optimal output result; while multi-script execution

occurs in big computation workflow runs that could last days, weeks, or even months,

which usually consist of more than one script or a cascade of subroutines of multiple

scripts using different input argument(s) and/or parameters configured at each setting.

Under such circumstances, some intermediate data files could be generated and

consumed implicitly within such a long chain reaction, which usually play a key role in

determining the final model output. However, these can easily get ignored if not enough

attention were paid. In this complex case, we are interested in what kind of provenance

information could be captured, queried or visualized and at which levels of granularity

(e.g., at the script level, data level, field level, record level, file level, function,

aggregate level, provided that it has been configured at each). In order to reveal data

lineage, we might again need to use a combination of YW and other provenance

tracking tools (e.g., DataONE RunManager, NW) for exposing prospective,

retrospective and hybrid provenance. We will demonstrate our preliminary results in the

demo session of the 12th International Digital Curation Conference, showing the new

capabilities described above.

Another direction of future work is that we want to generate and query ProvONE-

compatible RDF representations of YW annotations, workflow models, and

retrospective provenance so that ProvONE compatible vocabulary extensions may be

used in YW in the future via the mapping between YW and ProvONE data model.

IJDC | General Article

406 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

Acknowledgments

The work presented in this paper is supported, in part, by NSF awards DBI-1356751

(Kurator), ACI-1430508 (DataONE), SMA-1637155 (SKOPE), and ACI-1541450

(Whole Tale).

References

Altintas, I., Barney, O., & Jaeger-Frank, E. (2006). Provenance collection support in the

Kepler scientific workflow system. IPAW, 2006. doi:10.1007/11890850_14

Bavoil, L., Callahan, S.P., Crossno, P.J., Freire, J., Scheidegger, C.E., Silva, C.T. & Vo,

H.T. (2005). VisTrails: Enabling interactive multiple-view visualizations. In

Visualization 2005 (VIS ’05), pp. 135–142. IEEE.

doi:10.1109/VISUAL.2005.1532788

Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-Reyes, S., Zednik, S., &

Zhao, J. (2013). W3C PROV-O: The PROV ontology. Retrieved from

https://www.w3.org/TR/prov-o/

Bowers, S., McPhillips, T., & Ludäscher, B. (2012). Declarative rules for inferring fine-

grained data provenance from scientific workflow execution traces. In Provenance

and Annotation of Data and Processes, 82–96. Springer, Berlin, Heidelberg.

doi:10.1007/978-3-642-34222-6_7

Bowers, S., McPhillips, T., Riddle, S., Anand, M.K., & Ludäscher, B. (2008).

Kepler/pPOD: Scientific workflow and provenance support for assembling the tree

of life. IPAW, 2008. doi:10.1007/978-3-540-89965-5_9

Cao, Y., Jones, C., Vicenttin, V.C., Jones, M.B., Ludäscher, B., McPhillips, T.M.,

Missier, P., Schwalm, C.R., Slaughter, P., Vieglais, D., Walker, L., & Wei, Y.

(2016a). DataONE: A data federation with provenance support. IPAW 2016, 230-

234. doi:10.1007/978-3-319-40593-3_28

Cao, Y., Vu, D., Wang, Q., Zhang, Q., Thavasimani, P., McPhillips, T., Missier, P., &

Ludäscher, B. (2016b). YW query demo site on Github. Retrieved from

https://github.com/idaks/dataone-ahm-2016-poster

Cuevas-Vicenttin, V., Ludäscher, B., Missier, P., Belhajjame, K., Chirigati, F., Wei, Y., ...

& Altintas, I. (2015). ProvONE: A PROV extension data model for scientific

workflow provenance. Retrieved from http://jenkins-

1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-

Documentation-trunk/ws/provenance/ProvONE/v1/provone.html

Deelman, E., Singh, G., Su, M. H., Blythe, J., Gil, Y., Kesselman, C., ... & Laity, A.

(2005). Pegasus: A framework for mapping complex scientific workflows onto

distributed systems. Scientific Programming, 13(3), 219-237.

doi:10.1155/2005/128026

IJDC | General Article

http://dx.doi.org/10.1155/2005/128026
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
http://jenkins-1.dataone.org/jenkins/view/Documentation%20Projects/job/ProvONE-Documentation-trunk/ws/provenance/ProvONE/v1/provone.html
https://github.com/idaks/dataone-ahm-2016-poster
http://dx.doi.org/10.1007/978-3-319-40593-3_28
http://dx.doi.org/10.1007/978-3-540-89965-5_9
http://dx.doi.org/10.1007/978-3-642-34222-6_7
https://www.w3.org/TR/prov-o/
http://dx.doi.org/10.1109/VISUAL.2005.1532788
http://dx.doi.org/10.1007/11890850_14

doi:10.2218/ijdc.v12i2.585 Qian Zhang et al. | 407

Freire, J., Fuhr, N., & Rauber, A. (2016). Reproducibility of data-oriented experiments

in e-Science (Dagstuhl Seminar 16041). Dagstuhl Reports, 6(1). Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik

Freire, J., Koop, D., Chirigati, F.S., & Silva, C.T. (2014). Reproducibility using vistrails.

In V. Stodden, F. Leisch & R.D. Peng (Eds) Implementing Reproducible Research,

pp 33. CRC Press.

Gandrud, C. (2013). Reproducible research with R and R Studio. CRC Press.

Goecks, J., Nekrutenko, A., & Taylor, J. (2010). Galaxy: A comprehensive approach for

supporting accessible, reproducible, and transparent computational research in the

life sciences. Genome Biology, 11(8). doi:10.1186/gb-2010-11-8-r86

Lerner, B.S., & Boose, E.R. (2014). Collecting provenance in an interactive scripting

environment. In Workshop on the Theory and Practice of Provenance (TaPP),

Cologne, Germany.

LIGO Scientific Collaboration (LSC). (2015). LIGO Open Science Center: Data release

for event GW150914. Retrieved from https://losc.ligo.org/events/GW150914/

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., ... Zhao, Y.

(2006). Scientific workflow management and the Kepler system. Concurrency and

Computation: Practice and Experience, 18(10), 1039–1065. doi:10.1002/cpe.994

McPhillips, T., Bowers, S., Belhajjame, K., & Ludäscher, B. (2015a). Retrospective

provenance without a runtime provenance recorder. Paper presented at the 7th

USENIX Workshop on the Theory and Practice of Provenance (TaPP 2015).

McPhillips, T., Song, T., Kolisnik, T., Aulenbach, S., Belhajjame, K., Bocinsky, R.K.,

Cao, Y., Cheney, J., Chirigati, F., Dey, S., Freire, J., Jones, C., Hanken, J., Kintigh,

K.W., Kohler, T.A., Koop, D., Macklin, J.A., Missier, P., Schildhauer, M., Schwalm,

C., Wei, Y., Bieda, M., & Ludäscher, B. (2015b). YesWorkflow: A user-oriented,

language-independent tool for recovering workflow information from scripts.

International Journal of Digital Curation 10(1), 298-313.

doi:10.2218/ijdc.v10i1.370

Missier, P., Belhajjame, K., Zhao, J., Roos, M., & Goble, C. (2008). Data lineage model

for Taverna workflows with lightweight annotation requirements. IPAW, 2008.

doi:10.1007/978-3-540-89965-5_4

Murta, L., Braganholo, V., Chirigati, F., Koop, D., & Freire J. (2014). noWorkflow:

Capturing and analyzing provenance of scripts. IPAW 2014, 71-83. doi:10.1007/978-

3-319-16462-5_6

Oinn, T., Addis, M., Ferris, J., Marvin, D., Senger, M., Greenwood, M., Carver, T.,

Glover, K., Pocock, M.R., Wipat, A., & Li, P. (2004). Taverna: A tool for the

composition and enactment of bioinformatics workflows. Bioinformatics 20(17),

3045–3054. doi:10.1093/bioinformatics/bth361

IJDC | General Article

http://dx.doi.org/10.1093/bioinformatics/bth361
http://dx.doi.org/10.1007/978-3-319-16462-5_6
http://dx.doi.org/10.1007/978-3-319-16462-5_6
http://dx.doi.org/10.1007/978-3-540-89965-5_4
http://dx.doi.org/10.2218/ijdc.v10i1.370%20
http://dx.doi.org/10.1002/cpe.994%20
https://losc.ligo.org/events/GW150914/
http://dx.doi.org/10.1186/gb-2010-11-8-r86

408 | Revealing the Detailed Lineage of Script Outputs doi:10.2218/ijdc.v12i2.585

Pimentel, J.F., Dey, S.C., McPhillips, T.M., Belhajjame, K., Koop, D., Murta, L.,

Braganholo, V., & Ludäscher, B. (2016). Yin and yang: Demonstrating

complementary provenance from noWorkflow and YesWorkflow. IPAW 2016, 161-

165. doi:10.1007/978-3-319-40593-3_13

Tilmes, C., Yesha, Y., & Halem, M. (2010). Tracking provenance of earth science data.

Earth Science Informatics, 3(1-2), 59-65. doi:10.1007/s12145-010-0046-3

Tsai, Y., McPhillips, S.E., Gonzalez, A., McPhillips, T M., Zinn, D., Cohen, A. E., ...

Soltis, S.M. (2013). Autodrug: Fully automated macromolecular crystallography

workflows for fragment-based drug discovery. Acta Crystallographica Section D:

Biological Crystallography, 69(5), 796–803. doi:10.1107/S0907444913001984

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-

Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., et al. (2013). The Taverna workflow

suite: designing and executing workflows of Web Services on the desktop, web or in

the cloud. Nucleic Acids Research, 2013. doi:10.1093/nar/gkt328

Zhang, Q., Cao, Y., Wang, Q., Vu, D., Thavasimani, P., McPhillips, T., Missier, P., &

Ludäscher, B. (2017). yw-idcc-17 hybrid query demo site. GitHub. Retrieved from

https://github.com/yesworkflow-org/yw-idcc-17

Zhao, Y., Wilde, M., & Foster, I. (2006). Applying the virtual data provenance model. In

International Provenance and Annotation Workshop (pp. 148-161). Springer Berlin

Heidelberg.

IJDC | General Article

https://github.com/yesworkflow-org/yw-idcc-17
http://dx.doi.org/10.1093/nar/gkt328
http://dx.doi.org/10.1107/S0907444913001984
http://dx.doi.org/10.1007/s12145-010-0046-3
http://dx.doi.org/10.1007/978-3-319-40593-3_13

	Introduction
	Prospective and Retrospective Provenance Elements
	Modelling Scripts as Workflows with YW Annotations
	Reconstructing Provenance with YW-Recon
	Recording File-Level Provenance with DataONE RunManagers (RM)
	Code-Level Provenance Capture with noWorkflow

	Hybrid Provenance
	YesWorkflow–RunManager Bridge (YW-RM)
	YesWorkflow–noWorkflow Bridge (YW-NW)

	Example Use Cases
	Use Case: Twitter Sentiment Analysis
	Use Case: C3C4
	Use Case: LIGO
	Use Case: SPNHC

	Conclusions and Future Work
	Acknowledgments
	References

