
IJDC | General Article

Incorporating Software Curation into Research Data
Management Services

Fernando Rios
University of Arizona

Abstract

Many large research universities provide research data management (RDM) support
services for researchers. These may include support for data management planning, best
practices (e.g., organization, support, and storage), archiving, sharing, and publication.
However, these data-focused services may under-emphasize the importance of the
software that is created to analyse said data. This is problematic for several reasons.
First, because software is an integral part of research across all disciplines, it
undermines the ability of said research to be understood, verified, and reused by others
(and perhaps even the researcher themselves). Second, it may result in less visibility
and credit for those involved in creating the software. A third reason is related to
stewardship: if there is no clear process for how, when, and where the software
associated with research can be accessed and who will be responsible for maintaining
such access, important details of the research may be lost over time.

This article presents the process by which the RDM services unit of a large research
university addressed the lack of emphasis on software and source code in their existing
service offerings. The greatest challenges were related to the need to incorporate
software into existing data-oriented service workflows while minimizing additional
resources required, and the nascent state of software curation and archiving in a data
management context. The problem was addressed from four directions: building an
understanding of software curation and preservation from various viewpoints (e.g.,
video games, software engineering), building a conceptual model of software
preservation to guide service decisions, implementing software-related services, and
documenting and evaluating the work to build expertise and establish a standard service
level.

Received 19 February 2018 ~ Accepted 20 February 2018

Correspondence should be addressed to Fernando Rios, University of Arizona Libraries, Tucson, Arizona, United
States. Email: frios@email.arizona.edu

An earlier version of this paper was presented at the 13th International Digital Curation Conference.

The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. The IJDC is published by the
University of Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
Licence, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2018, Vol. 13, Iss. 1, 235–247

235 http://dx.doi.org/10.2218/ijdc.v13i1.608
DOI: 10.2218/ijdc.v13i1.608

http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://dx.doi.org/10.2218/ijdc.v0i0.0
http://www.ijdc.net/
mailto:frios@email.arizona.edu

236 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

Introduction

The work described in this paper was carried out while the author was with the Sheridan
Libraries at Johns Hopkins University.

Research data management (RDM) services provided by libraries at many large
research universities are well established (Ray, 2014; Soehner, Steeves and Ward, 2010).
Although the specifics vary across institutions (Fearon, Gunia, Lake, Pralle and Sallans,
2013), those that offer these services provide some level of support for their researchers
around data management planning, support for data management best practices (e.g.,
organization, workflows, storage), and support for data sharing and publication (e.g.,
identifying a suitable data repository, identifying publisher data sharing requirements,
data de-identification). However, these services can be so data-oriented that they do not
give much consideration to the software created as part of research activities (research
software). This contributes to the treatment of software as a second-class research
output.

Being able to examine the materials and methods used in research is critical for
others to be able to recreate the analysis and results that support research claims. This
act of reproducing results is a cornerstone of the scientific process. As a result, in the
context of e-research, having a record of the data used or produced along with the tools
used to work with the data is paramount. Although data management professionals have
increasingly become aware that data and the associated software written to collect,
process, analyze, and visualize that data are equally important in the context of
capturing a complete picture of scholarship (Matthews, Shaon, Bicarregui and Jones,
2010; Chue Hong, 2012; Hettrick, 2016), RDM services often seem to treat software
(both executables and source code) and data in the same way. This is evidenced by the
recent survey (Hudson-Vitale et al., 2017) of Association of Research Libraries (ARL)
member institutions about current staffing and infrastructure for data curation which
showed that software is still commonly treated as second-class to data1. Efforts from the
Software Preservation Network (Meyerson et al., 2017; Rios, Almas, Chassanoff,
Contaxis, Jabloner, 2017), the Curating for Reproducibility consortium2, and others3
have begun to address the problem of bringing best-practices of software curation and
preservation to RDM. Efforts such as those from the PERICLES4 project and the
Software Sustainability Institute5 are also addressing the problem of software in RDM at
the national/international, institutional, and individual levels. However, as evidenced by
the software preservation and sustainability birds-of-a-feather session at the 12th
International Digital Curation Conference, the outcomes of those efforts may take some
time to become more widely adopted (Cope, 2017).

This paper presents how the data management service unit at Johns Hopkins
University (JHU) addressed the lack of emphasis on software and source code in
existing RDM services. The primary goal was to address the lack of emphasis on
software and source code in existing offerings. The general approach was to (a)

1 In defense of the survey responders, code reviews, support for emulation, and implementing software
registries were highly ranked in terms of aspirational goals for future service.

2 Curating for Reproducibility: http://cure.web.unc.edu
3 E.g., the Earth Science Information Partners (ESIP) Software Assessment Guidelines:

https://esipfed.github.io/Software-Assessment-Guidelines/
4 PERICLES: http://pericles-project.eu
5 Software Sustainability Institute: https://www.software.ac.uk

IJDC | General Article

https://www.software.ac.uk/
http://pericles-project.eu/
https://esipfed.github.io/Software-Assessment-Guidelines/
http://cure.web.unc.edu/

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 237

determine the current practice with respect to research software in RDM, software
preservation, and reproducibility, (b) use this information to identify knowledge and
service gaps, (c) fill some of these gaps by incorporating software curation and
preservation within existing data-oriented services, given certain operational constraints,
and (d) document and evaluate the workflows and establish a standard service level.

Software as a Research Output

Before continuing, it is illuminating to consider why software should be treated
differently from data and why it is important to do so. As noted by Katz et al. (2016),
the main difference between data and software in the context of research is that of
action: “software generally performs a function upon something (e.g., software
processes data), while data generally has a function performed upon it (e.g., data is
processed by software)”. In other words, “we are more interested in what software does
rather than what software is” (Matthews, Shaon, Bicarregui and Jones, 2010).

When dealing with software in a RDM context, data and software are often lumped
together which is convenient but problematic on several fronts. First, if software is not
considered separately from data, it may hinder the ease with which others (including the
creators themselves) can find, understand, reproduce, and reuse not only the software,
but the entire body of research. This limits the overall impact potential of the work. As
an example, consider a situation where software is not given separate consideration in
drafting a data management plan. The lack of attention in the resulting plan may carry
through to bad practices in documenting and organizing code, which will then make it
more difficult at the time of publishing to have data and code packages which adhere to
FAIR (findable, accessible, interoperable, reusable) principles (Wilkinson et al., 2016).
Another example relates to metadata. Metadata for datasets has been given much
consideration (e.g., DataCite) and it is often used to describe software. However,
software-specific metadata provides richer descriptions and efforts to bring it to the
forefront are ongoing.6

Second, lumping data and code together discourages explicitly thinking about
crediting those individuals involved in creating the software. These individuals include
not only developers but also testers, bug reporters, documenters, and others that
contributed to the software in some way. This lack of credit may decrease the incentive
for future contributions.

Third, in the context of data sharing policies and open access discussions, if
software is not given first-class consideration by funders, publishers, and institutions, it
sets a bad example for those receiving funding from, publishing in, or working for said
entities to also treat software on the same level as data and publications. In other words,
consideration of software as integral to research (and therefore worthy of first-class,
FAIR treatment), while acknowledging its commonalities with and differences from
data, should take place not only from the bottom but also from the top.

6 See the introduction of software elements in DataCite (DataCite Metadata Working Group, 2017; Starr,
2017), the work of the CodeMeta project (Jones et al., 2017), and the Software Preservation Network
(Meyerson et al., 2017).

IJDC | General Article

238 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

Motivation, Objectives and Initial Challenges

Data management services provided by the Johns Hopkins University libraries7 consist
of providing consultative support to researchers around data management planning, data
sharing, best practices for working with data (storage, encryption, sensitive data,
organization), providing a data archiving service, and training/education for data
management best-practices. Prior to the work presented here, the services provided were
entirely focused on research data, though there was recognition that software also had a
role to play. Despite this, software had not been explicitly considered in any of the
service offerings. The emerging thrust in the data management and open research
communities regarding transparency and reproducibility and the important role that
research software plays initiated conversations into how research software could be
incorporated into the data management service unit’s existing offerings. Specifically, the
notion of software archiving (analogous to data archiving) was a catalyst.

The objective of the project was to either extend existing data services to explicitly
consider software or develop new ones. At a high level, the achieving this was
straightforward: First, identify what was currently being done in the area of software
curation, preservation, and archiving; investigate best practices in research transparency
and reproducibility as they relate to software; distil the findings to ones which are
relevant in an RDM context; determine what needed to be done to implement those
which are both feasible and impactful; and increase the unit’s expertise with respect to
things like software curation, preservation, and the reproducibility of computational
results for the purpose of supporting software-related RDM services.

The first challenge was determining where to even begin the process. The initial
lack of expertise within the unit with respect to the landscape of research software as it
relates to RDM and the challenges involved in developing and using software in a
research environment, combined with the nascent state of research reproducibility best
practices and tools meant that identifying an initial point of entry to expanding services
would take some time. Addressing this challenge would involve a broad examination of
material located at the intersection of data management, software preservation and
curation (including theory, tools, and practice), credit for research code, metadata
standards for software, the research reproducibility landscape, and tracking the rapidly
evolving communities in these spaces.

The second class of challenges were resource constraints. These consisted of limited
resources for raising the unit’s level of expertise on such a wide variety of topics,
building a prototype workflow, developing software-related services that could be
plugged into existing data services with minimal effort and cost, and implementing,
piloting, and evaluating them.

Developing Services

Addressing the objective meant that each of the unit’s primary service areas (consulting,
archiving, and training/education) needed to be examined for places where the
workflow could/should be extended to include research software. This section describes
what, why, and how services incorporating research software curation were
implemented.

7 Data Management Services – Johns Hopkins University: http://dms.data.jhu.edu

IJDC | General Article

http://dms.data.jhu.edu/

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 239

Knowledge Building and Planning

As the first step, a comprehensive review of the literature relevant to research software
preservation, reproducibility, and sharing was undertaken (Rios, 2016a). The review
covered not only the scientific viewpoint but also software preservation and curation in
the cultural heritage domain (e.g., video games, historical software). Topics included
motivations and challenges in software preservation and curation, approaches and tools
for preservation, software engineering, an overview of software metadata, open source
code sharing practices, publishing, and intellectual property considerations. This review
was meant to provide an overview of the landscape so as to be able to identify
determine current practice, identify service gaps, and find tools/approaches with which
to potentially address them. If such tool/approaches did not exist, then the review would
inform what would need to be done to fill service gaps, at least in principle.

In order to translate the information from the review into a form that could be more
easily used for planning, the stages and processes of developing research software were
mapped onto a high-level view of approaches to software preservation and RDM. This
resulted in the Pathways of Research Software Preservation (Rios, 2016b), shown in
Figure 1. The figure was used over a number of group planning sessions to determine
what service gaps existed and what services could be feasibly offered. The details of
how this was done are presented in Rios (2016b). In summary, different preservation
scenarios from the Software Preservation Benefits Framework (Chue Hong, Crouch,
Hettrick, Parkinson and Shreeve, 2010) were randomly assigned to session participants.
Subsequently, each person was asked to use Figure 1 to connect preservation activities
across the software phases that best addressed each assigned scenario. Each person then
presented to the group their justification for choosing a particular path and a group
discussion followed. One of the first things that came out of this exercise was a decision
to limit ‘research software’ to include only software that was created by researchers
(e.g., scripts, simulations, analysis tools, etc.). Although software not created by
researchers themselves (e.g., third-party libraries, commercial programming
environments, etc.) were not totally excluded, not focusing on such software avoided
potential rabbit holes such as a commitment to capture many levels of dependencies,
and potential legal hurdles involving copyrighted software.

IJDC | General Article

240 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

Figure 1. The Pathways of Research Software Preservation, reproduced from Rios (2016b).

The final result was a view of service gaps related to research software preservation
and archiving, and a target set of services which could be expanded within the project
constraints. The identified services were: archiving of research software in the JHU
Data Archive8 (and associated workflows for doing so), including software in data
management planning in a way that minimized the additional work/information required
from researchers, expanding the team’s consulting expertise to include research
software, and expanding training material to include software related aspects of data
archiving and sharing.

Archiving

Developing workflows for archiving research software was one of the primary ignitors
for expanding data services to include software. The exercise using Figure 1 served to
solidify the primary use case: supporting funder and publisher requirements for sharing
all research materials. Although some funders and many publishers do not yet require
sharing of code, many others do as in conjunction with data sharing. Therefore,
accommodating deposit of code so it not only meets this need but also doing it in a way
that enhances its impact was deemed important.

Conceptually, the software archiving workflow is quite simple as it was developed
to mirror the existing data archiving workflow, which at JHU takes the form of
mediated deposit into the JHU Data Archive (Dataverse-based9). In summary, the
workflow involves researchers providing basic information about the software,
obtaining the data and code, and ingesting into the Data Archive.

The primary challenges in implementing the software-aware workflow were:
structuring dataset deposits given that it is possible for researchers to provide a single

8 Johns Hopkins Data Archive: https://archive.data.jhu.edu/
9 The Data Archive is a self-hosted instance of Dataverse 4: https://dataverse.org/

IJDC | General Article

https://dataverse.org/
https://archive.data.jhu.edu/

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 241

‘dataset’ containing different combinations of data and software, and determining
exactly how software should be described.

Figure 2. A conceptualization of the three different categories of software deposits considered
in the archiving workflow. a) Data + software (software-focused), b) data + software
(data focused), c) software-only (with possible test data included).

In regards to the first challenge, Figure 2 shows three different kinds of software-
containing datasets that are possible: datasets that contain data and software where the
software is the main research output and data plays a supporting, but still important, role
(e.g., a novel algorithm with novel study data, as in Figure 2a), where data is the main
output with software playing a supporting role (e.g., a dataset with associated non-novel
plotting, analysis/cleaning scripts, as in Figure 2b), and datasets where the software is
the primary focus (e.g., a novel general purpose tool meant for wide release that may
have some sample data, as in Figure 2c). A fourth case where both software and data are
novel and of equal importance can be handled by combining Figure 2a and b. The cases
are differentiated because they have different needs when it comes to archiving and
sharing. For instance, the case of Figure 2c might need the ability to track and cite
different versions of the software and may be associated with multiple publications. On
the other hand, the cases of Figure 2a and 2b might be self-contained studies in which
the code may not ever be updated. An additional complication is that each ‘software’
bubble in Figure 2 could actually consist of multiple, interrelated subcomponents.
Experiments using the hierarchical nature of the Dataverse data model – datasets exist
within containers called ‘Dataverses’ which can be nested in other Dataverses –
revealed that although using the nested structure to represent the various cases and
subcomponents made sense conceptually, in practice the extra structure just cluttered the
Dataverse interface and made the datasets harder to download and understand. In
addition, since each Dataverse dataset receives its own identifier, splitting up data, code,
and associated versions and subcomponents into separate datasets meant that multiple
identifiers would correspond to pieces of the same body of research. It was decided that
this would be highly confusing and having everything under a single identifier would be
better (at the expense of precision of identification). As a result, all three cases are
handled using a single Dataverse dataset and the differentiation between cases can be
inferred by the information entered in a custom software metadata block in Dataverse.

To provide guidance for addressing these complexities, the following rules of thumb
were adopted by the group when eliciting information from researchers so that the
complexities were minimized:

IJDC | General Article

242 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

 Describe software at the most general/coarsest level possible which still allows
for verifying the claims made in the research,

 Include enough information to allow others to actually reuse the software,

 Include enough information so that others can give you credit.

Figure 3. Metadata for software, reproduced from Rios (2017). The numbers in parentheses
indicate the number of entries allowed, e.g. there can only be one SoftwareTitle but
there can be one or more SoftwareContributors. Several of the fields such as
ProgrammingLanguage and License are controlled vocabularies.

Figure 3 shows the custom metadata block that was added to Dataverse to support
richer software description. The required fields were determined by surveying existing
software metadata (see Rios, 2016a) and finding the ones that appeared most often
across the surveyed schemas. The optional fields were also obtained from the survey but
were selected according to perceived utility (based on conversations with researchers
and team expertise), ease of obtaining the required information, and ability to play a role
in future linked data efforts.

The process for actually obtaining the required metadata from researchers is as
follows. The required fields except datePublished (entered by the consultant as the date
the deposit was made) and softwareIdentifier (an automatically assigned DOI) are
obtained by extending an existing ‘data deposit form’ normally given to researchers to
fill out prior to depositing their data. This form collects required dataset information
such as title, authors, funding sources and contact information, along with some
optional information, such as related publications, and file-level descriptions. Software-
related additions are purposefully minimal: software description, source code repository
(if available), software contributors (if different from the author list), and license. The
form encourages the use of the MIT license but researchers can choose any other license
as needed. After receiving the deposit from the researcher, the information is transferred
into the custom metadata block in Dataverse. To fill in the optional software-related
fields in the block, the consultant harvests the information in the free-text description
fields from the deposit form, the information present in any source code repositories,
and any other readme files contained in the dataset provided by the researcher. In the
piloting phase, it was found that although some fields are easy for the consultant to
complete, such as the programming language(s) and whether an object is source code or
compiled executable, for others, such as dependency information, it was often only

IJDC | General Article

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 243

possible to indicate high-level dependencies (e.g., MATLAB, Python 2.7) unless the
information was explicitly provided by the researcher.

Consulting

Consulting services, by their nature, rely on the consultant’s expert knowledge about a
particular topic. To successfully expand consulting services to include research
software, consultants should be knowledgeable on things like: which data repositories
accept software and what are their capabilities for doing so? What best practices should
be followed to ensure software is more easily preserved and the associated body of
research more reproducible? What licenses are available for releasing research
software? How are intellectual property issues the same or different than those for data?
How, why, and where can one publish research software?

In order to build this expertise within the group, a series of bi-weekly meetings were
held over the course of the project. Although some of these meetings were used for
planning and iteration (e.g., for the previously mentioned planning exercise using
Figure 1), many were organized in the form of an interactive hour-long seminar in
which a relevant topic in software preservation, research reproducibility, or open
science was presented and discussed.

Although these meetings served to introduce a topic and attendees found them
interesting, the amount of information that needed to be assimilated was overwhelming
at times. To mitigate this, the information was captured in internal reports that contained
all the relevant information in a way that was tailored to fit with how consultants work
with researchers on data consultations. However, these reports were still difficult to
digest. To help with this, a quick-reference resource was designed, containing the
information deemed most important for consulting. The end result took the form of a
graphical ‘I Need To…’ reference chart (Rios, 2017) with pointers to key elements
which could be further researched by the consultants as needed (e.g., via the reports).

Based on feedback from the consultants, the best approach for learning the material
was by providing feedback and iterating on the creation of educational material targeted
to researchers themselves.

Education and Training

Although it was one of the final aspects to be addressed, the development of educational
resources targeted at researchers was one of the most visible outputs of expanding
services to include research software. The reason for this is that the material created
embodied all of the experience gained by expanding the other service areas and was
presented in forms that were widely accessible, such as in-person and online training
sessions, and via web resources. The general approach to presenting material on the role
of software in enhancing reproducibility and openness was to frame it in the context of
increased research efficiency, more citations, more exposure, and higher impact. The
outputs were a set of online training modules, a checklist for software archiving, and
links to external web resources.

Guidance for enhancing research reproducibility via good software practices was
presented in the form of a series of publicly accessible online modules totalling 22
minutes in duration10. Apart from introductory material explaining the what and why
around research software, topics were grouped into six modules (documentation,

10 Planning for software reproducibility and reuse online course: http://dms.data.jhu.edu/training/online-
training/software-online-training/

IJDC | General Article

http://dms.data.jhu.edu/training/online-training/software-online-training/
http://dms.data.jhu.edu/training/online-training/software-online-training/

244 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

organization and automation, version control and quality assurance, context and credit,
licensing, and archiving) and included: best practices for writing, documenting, and
organizing code, understanding why version control is good, linking code to research
results, making code publishable and citable, intellectual property issues, and the why
and how of preserving software over time.

In order to give more clarity to the process of creating a high-quality software
package for archiving, a checklist11 with the most important considerations for doing so
was created. These considerations include thinking about the target audience and
thinking about the different pieces of information needed for the metadata collected
during the deposit process.

Lessons Learned

The project met the objectives of developing software archiving services that fit
alongside existing data services. In terms of software archiving in the data repository,
the prototype workflows and metadata structures were successful as evidenced by
enhanced visibility of software in datasets in the JHU Data Archive. However, some
tweaking of the workflow was required as a result of piloting. Originally, a workflow
which incorporated the OntoSoft (Gil, Ratnakar and Garijo, 2015) software discovery
portal was trialled. OntoSoft was seen as ideal for capturing software information
because the OntoSoft ontology captures many aspects of research software in a structure
which embodies linked data principles and exposes them via a convenient user
interface. However, difficulties in linking the software/dataset located in Dataverse with
the associated entry in OntoSoft in a satisfactory way resulted in abandoning the idea of
using OntoSoft as a metadata store.

Quantifying the success of knowledge-building is more difficult but informal
conversations with team members revealed that they felt that at the end of the project,
they had a stronger capability of supporting software-related questions in the context of
RDM. Part of this confidence came from the great deal of effort spent documenting
workflows and creating and refining educational material. The latter was mentioned by
the team as one of the most helpful ways to learn about the subject matter. In terms of
broader impact, the online modules in particular, were the most successful as a result of
the visibility they received on social media at the time of release. This shows that there
is a demand for easy to digest, practical advice on working reproducibly with software.

As is often the case, the most challenging part of the process was not technical but
human in nature. For example, generating ideas for how the archiving workflow might
look like was relatively easy and ‘fun’ (enabled by planning tools such as Figure 1).
However, actually developing and refining the workflows took much longer due to the
need to dive deep into the details and consultants’ limited time each month to work on
the project. To make the process move more smoothly, developing rough prototypes
sooner would have been beneficial so as to be able to iterate over a longer period of
time.

In the course of developing the services, the similarities and differences of software
with data became acutely visible, especially after the planning exercises. Reflecting on
the outcomes of integrating software into RDM services, it is obvious that there exists a
vast chasm between the effort and resources needed to support research software in a

11 Software archiving checklist: http://dms.data.jhu.edu/data-management-resources/publish-and-
share/software-archiving/software-archiving-checklist/

IJDC | General Article

http://dms.data.jhu.edu/data-management-resources/publish-and-share/software-archiving/software-archiving-checklist/
http://dms.data.jhu.edu/data-management-resources/publish-and-share/software-archiving/software-archiving-checklist/

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 245

dataset-like way and the capability of truly capturing the essence of research software.
For example, after incorporating software into the existing archiving workflow, it
became readily apparent that the effort required for providing services for archiving
software source code (including metadata, structuring of the code and associated
datasets into an archival package, and providing educational support for doing so) is
orders of magnitude smaller than the effort needed to provide services (e.g., technical
platforms, consulting) for actually supporting software re-execution now and in the
future. Although there are solutions for doing so, enabling their success requires
effective governance, policy, and, critically, viable business models. Cyberinfrastructure
projects falling under the umbrella of ‘science gateways’12, examples of which include
XSEDE (Towns et al., 2014) and CyVerse (Goff et al., 2011; Merchant et al., 2016), are
tackling the issue but they are specifically resourced to do so at funding levels much
higher than available to library-based RDM services. As a result, providing truly
software-oriented services will likely remain out of reach for library-based RDM
consulting units unless partnerships are forged with those that have the capacity to cater
to the aspects of research software that truly separate it from data.

Acknowledgements

The author would like to acknowledge Barbara Pralle, Jonathan Petters, Reid Boehm,
Chen Chiu, Dave Fearon, Tim DiLauro, Sayeed Choudhury, and Eliott Metsger for their
contributions during the course of this work. Support was provided in part by a Council
for Library Information Resources (CLIR) postdoctoral fellowship.

References

Chue Hong, N. (2012). Digital preservation and curation: The danger of overlooking
software. In The Preservation of Complex Objects: Volume 1 – Visualisations and
Simulations. Retrieved from
http://www.research.ed.ac.uk/portal/en/publications/digital-preservation-and-
curation-the-danger-of-overlooking-software(200ad653-3e21-49d2-beae-
4dcb581ea934).html

Chue Hong, N., Crouch, S., Hettrick, S., Parkinson, T., & Shreeve, M. (2010). Software
preservation benefits framework. Software Sustainability Institute.

Cope, J. (2017). Software preservation and sustainability. Retrieved from
http://www.dcc.ac.uk/news/software-preservation-and-sustainability

DataCite Metadata Working Group. (2017). DataCite metadata schema for the
publication and citation of research data v4.1. DataCite. doi:10.5438/0015

Fearon, D.J., Gunia, B., Lake, S., Pralle, B.E., & Sallans, A.L. (2013). Research data
management services, SPEC Kit 334. Retrieved from
http://publications.arl.org/Research-Data-Management-Services-SPEC-Kit-334/

12 Internation Coalition on Science Gateways: http://www.icsciencegateways.org/

IJDC | General Article

http://publications.arl.org/Research-Data-Management-Services-SPEC-Kit-334/
https://doi.org/10.5438/0015
http://www.dcc.ac.uk/news/software-preservation-and-sustainability
http://www.research.ed.ac.uk/portal/en/publications/digital-preservation-and-curation-the-danger-of-overlooking-software(200ad653-3e21-49d2-beae-4dcb581ea934).html
http://www.research.ed.ac.uk/portal/en/publications/digital-preservation-and-curation-the-danger-of-overlooking-software(200ad653-3e21-49d2-beae-4dcb581ea934).html
http://www.research.ed.ac.uk/portal/en/publications/digital-preservation-and-curation-the-danger-of-overlooking-software(200ad653-3e21-49d2-beae-4dcb581ea934).html
http://www.icsciencegateways.org/

246 | Incorporating Software Curation doi:10.2218/ijdc.v13i1.608

Gil, Y., Ratnakar, V., & Garijo, D. (2015). OntoSoft: Capturing scientific software
metadata. Proceedings of the Eighth ACM International Conference on Knowledge
Capture, Palisades, NY, ACM Press. doi:10.1145/2815833

Goff, S.A., Vaughn, M., McKay, S., Lyons, E., Stapleton, A.E., Gessler, D., …
Stanzione, D. (2011). The iPlant Collaborative: Cyberinfrastructure for plant
biology. Frontiers in Plant Science, 2. doi:10.3389/fpls.2011.00034

Hettrick, S. (2016). Research Software Sustainability: Report on a Knowledge
Exchange Workshop. Retrieved from http://www.knowledge-
exchange.info/event/software-sustainability

Hudson-Vitale, C., Imker, H., Johnston, L.R., Carlson, J., Kozlowski, W., Olendorf, R.,
& Stewart, C. (2017). Data curation, SPEC Kit 354. Retrieved from
http://publications.arl.org/Data-Curation-SPEC-Kit-354/

Jones, M.B., Boettiger, C., Mayes, A.C., Smith, A., Slaughter, P., Niemeyer, K., …
Goble, C. (2017). CodeMeta: An exchange schema for software metadata. KNB
Data Repository. doi:10.5063/schema/codemeta-2.0

Katz, D.S., Niemeyer, K.E., Smith, A.M., Anderson, W.L., Boettiger, C., Hinsen, K., …
Rios, F. (2016). Software vs. data in the context of citation (No. e2630v1). PeerJ Inc.
doi:10.7287/peerj.preprints.2630v1

Matthews, B., Shaon, A., Bicarregui, J., & Jones, C. (2010). A framework for software
preservation. International Journal of Digital Curation, 5(1), 91–105.
doi:10.2218/ijdc.v5i1.145

Meyerson, J., Vowell, Z., Hagenmaier, W., Leventhal, A., Roke, E.R., Rios, F., & Walsh,
T. (2017). The Software Preservation Network (SPN): A community effort to ensure
long term access to digital cultural heritage. D-Lib Magazine, 23(5/6).
doi:10.1045/may2017-meyerson

Merchant, N., Lyons, E., Goff, S., Vaughn, M., Ware, D., Micklos, D., & Antin, P.
(2016). The iPlant Collaborative: Cyberinfrastructure for enabling data to discovery
for the life sciences. PLOS Biology, 14(1), e1002342.
doi:10.1371/journal.pbio.1002342

Ray, J.M. (Ed.). (2014). Research data management: Practical strategies for
information professionals. West Lafayette, Indiana: Purdue University Press.

Rios, F. (2016a). Preserving and sharing software for transparent and reproducible
research: A review. doi:10.17605/OSF.IO/D4KEF

Rios, F. (2016b). The pathways of research software preservation: An educational and
planning resource for service development. D-Lib Magazine, 22(7/8).
doi:10.1045/july2016-rios

IJDC | General Article

https://doi.org/10.1045/july2016-rios
http://doi.org/10.17605/OSF.IO/D4KEF
https://doi.org/10.1371/journal.pbio.1002342
https://doi.org/10.1045/may2017-meyerson
https://doi.org/10.2218/ijdc.v5i1.145
https://doi.org/10.7287/peerj.preprints.2630v1
https://doi.org/10.5063/schema/codemeta-2.0
http://publications.arl.org/Data-Curation-SPEC-Kit-354/
http://www.knowledge-exchange.info/event/software-sustainability
http://www.knowledge-exchange.info/event/software-sustainability
https://doi.org/10.3389/fpls.2011.00034
http://dx.doi.org/10.1145/2815833

doi:10.2218/ijdc.v13i1.608 Fernando Rios | 247

Rios, F. (2017). A toolbox for curating and archiving research software for data
management specialists. Paper presented at the 12th International Digital Curation
Conference, Edinburgh, UK. Retrieved from
http://www.dcc.ac.uk/webfm_send/2398

Rios F., Almas B., Chassanoff A., Contaxis N. & Jabloner P. (2017). Exploring curation-
ready software: Improving curation-readiness. doi:10.17605/OSF.IO/T9G3Q

Soehner, C., Steeves, C., & Ward, J. (2010). E-Science and data support services: A
study of ARL member institutions. Association of Research Libraries. Retrieved from
https://eric.ed.gov/?id=ED528643

Starr, J. (2017). New DataCite metadata updates support software citation [website].
Retrieved from https://blog.datacite.org/metadata-schema-4-1/

Towns, J., Cockerill, T., Dahan, M., Foster, I., Gaither, K., Grimshaw, A., … Wilkens-
Diehr, N. (2014). XSEDE: Accelerating scientific discovery. Computing in Science
and Engineering, 16(5), 62–74. doi:10.1109/mcse.2014.80

Wilkinson, M.D., Dumontier, M., Aalbersberg, Ij.J., Appleton, G., Axton, M., Baak, A.,
… Mons, B. (2016). The FAIR guiding principles for scientific data management
and stewardship. Scientific Data, 3, 160018. doi:10.1038/sdata.2016.18

IJDC | General Article

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1109/mcse.2014.80
https://blog.datacite.org/metadata-schema-4-1/
https://eric.ed.gov/?id=ED528643
http://doi.org/10.17605/OSF.IO/T9G3Q
http://www.dcc.ac.uk/webfm_send/2398

	Introduction
	Software as a Research Output
	Motivation, Objectives and Initial Challenges
	Developing Services
	Knowledge Building and Planning
	Archiving
	Consulting
	Education and Training

	Lessons Learned
	Acknowledgements
	References

