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Cross-tier Web Programming for Curated
Databases: a Case Study

Abstract

Curated databases have become important sources of information across several scientifc disciplines, 
and as the result of manual work of experts, often become important reference works. Features such as  
provenance tracking, archiving, and data citation are widely regarded as important features for the 
curated databases, but implementing such features is challenging, and small database projects often 
lack the resources to do so.

A scientifc database application is not just the relational database itself, but also an ecosystem of web 
applications to display the data, and applications which allow data curation. Supporting advanced 
curation features requires changing all of these components, and there is currently no way to provide  
such capabilities in a reusable way.

Cross-tier programming languages have been proposed to simplify the creation of web applications, 
where  developers  can write an application in a  single,  uniform language.  Consequently,  database 
queries and updates can be written in the same language as the rest of the program, and at least in  
principle, it should be possible to provide curation features reusably via program transformations. As a 
frst  step  towards  this  goal,  it  is  important  to  establish  that  realistic  curated  databases  can  be 
implemented in a cross-tier programming language.

In  this  paper,  we describe  such a  case  study:  reimplementing the web front  end of  a  real  world 
scientifc  database,  the  IUPHAR/BPPS  Guide  to  Pharmacology  (GtoPdb),,  in  the  Links  cross-tier 
programming language. We show how programming language features such as language-integrated 
query  simplify  the  development  process,  and  rule  out  common  errors.  Through  a  comparative 
performance evaluation, we show that the Links implementation performs fewer database queries, 
while the time needed to handle the queries is comparable to the Java version. Furthermore, while 
there is some overhead to using Links because of its comparative immaturity compared to Java, the 
Links  version  is  usable  as  a  proof-of-concept  case  study  of  cross-tier  programming  for  curated 
databases.

This paper is a conference pre-print presented at IDCC 2020 after lightweight peer review. The most up-to-date 
version of the paper can be found on arXiv (Fowler et al., 2020),.
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Introduction

Curated databases have become important data resources across several scientifc disciplines. Such 
databases collect the current state of knowledge about a topic and many have become important 
reference works. They are constructed through the manual effort of experts, often over a long 
timespan, and it is widely appreciated that versioning and provenance-tracking are important for 
assessing the validity and freshness of the data, or tracing the origin of errors or discrepancies 
(BPuneman et al., 2008),. Unfortunately, implementing support for fne-grained provenance-tracking 
or versioning is a challenging task, usually performed on a system-by-system basis. Many such 
database projects, particularly smaller or shorter-term ones, lack the resources and expertise to do 
this.

A curated database is not just an isolated relational database, but also has surrounding 
infrastructure such as a web application for viewing or searching the data, and an editing interface 
used by the database curators to add or modify data. Each of these components are nontrivial to 
develop. A typical web application is really a distributed program involving code running on 
several “tiers”: Java or Python running on the server, JavaScript and HTML on the web browser, 
and SQL on a database. Curation interfaces can be either web applications or traditional client-
server database applications; in either case, modifying such a system is a nontrivial task, especially 
when the added functionality spans two or all three tiers.

Thus, augmenting an existing curated database web application (or designing a new system 
from scratch), to provide features such as versioning, provenance-tracking, or citation requires 
taking these requirements into account across two or more system layers, adding complexity 
beyond that of the basic functionality of the system. General-purpose techniques have been 
explored for supporting such features (BPuneman et al., 2008, 2004),, but there is currently no way to 
provide them in a reusable way.

Cross-tier web programming

Cross-tier programming languages (Chlipala, 2015; Cooper et al., 2006; Radanne et al., 2016; 
Serrano et al., 2006), have been proposed to simplify web and database application programming. 
The vision is that the programmer should only need to write a single program in a single language; 
the language implementation then takes care of the details of partitioning the program into client, 
server and database components, distributing the code, and coordinating their communication in 
the running program. A major beneft is the fact that database queries and updates can be written 
and checked for consistency in the same language as the rest of the program. In principle, 
advanced features such as provenance and versioning could be provided for such programs by 
program transformation: that is, by rewriting the program (possibly with some lightweight 
annotations), so that new functionality is implemented according to a high-level pattern. Indeed, 
Fehrenbach and Cheney (2018), have already shown how provenance tracking can be added as a 
programming language feature: a user must simply change a keyword in a query in order to obtain 
provenance metadata, rather than hand-crafting provenance tracking per application.

We argue that cross-tier programming is well-suited for curated databases: by using a single 
cross-tier language rather than a conventional multi-language approach, curated database 
developers should be able to focus on their application logic, and could (in the future), use pre-
packaged techniques for provenance-tracking and archiving provided by the language 
implementation (or even a library),. However, to date, cross-tier programming languages have not 
been widely used for curated databases. It is important to establish that such languages are capable 
of supporting the requirements of curated databases, and to identify any shortcomings that need to 
be overcome.
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Contributions

 In this paper we provide the frst case study of cross-tier web programming for scientifc databases 
by using Links, a functional, cross-tier web programming language (Cooper et al., 2006),, to 
implement a workalike web front-end for the IUPHAR/BPPS Guide to Pharmacology Database 
(GtoPdb),, an important curated pharmacological database (Harding et al., 2018),. Links is a 
research project that has been developed in Edinburgh over many years, and is not a widely-used 
mainstream programming language; however, by using it to develop case studies such as this one, 
we plan to demonstrate the value of cross-tier programming for scientifc databases, and evidence 
the viability of language-based support for curation.

In the remainder of the paper, we describe the background of GtoPdb and why it is an 
interesting database to use as a case study, describe some aspects of the Links implementation, and 
report on the results of a performance evaluation which shows that the Links implementation 
performs comparably with the offcial Java implementation, as well as providing lower overall 
query counts and more predictable performance results for database queries. We conclude with a 
summary of lessons learned so far and directions for future work.

Background

The International Union of BPasic and Clinical Pharmacology (IUPHAR), / BPritish Pharmacological 
Society (BPPS), Guide to Pharmacology (GtoPdb), is an expert-curated database that captures 
interactions between human proteins (“targets”), and ligand molecules from the pharmacological 
and medicinal chemistry literature. The resource is open-access and intended as a “one-stop shop” 
portal to pharmacological information. It provides a searchable database with quantitative 
information on 3,000 drug targets and related proteins, organised into families, and 9,700 
approved and investigational drugs, antibodies, and natural hormones, metabolites, and 
neurotransmitters that act on them. GtoPdb provides succinct overviews, key references and 
recommended experimental ligands for each target. It is a useful resource for researchers and 
students in pharmacology and drug discovery and provides the general public with accurate 
information on the basic science underlying drug action.

GtoPdb has its origin in IUPHAR-DBP which was frst compiled in 2003 (Harmar et al., 2009; 
Sharman et al., 2013, 2011),. Its scope was expanded between 2012 and 2015 to defne the data-
supported druggable genome, and was renamed GtoPdb (Pawson et al., 2014; Southan et al., 
2016),. GtoPdb is distinguished by a unique model of data collection and curation, with the 
guidance and support of the Nomenclature Committee of IUPHAR (NC-IUPHAR), and its 96 
target class subcommittees. These subcommittees comprise over 500 pharmacology experts who 
provide regular updates and contributions to GtoPdb. The GtoPdb web application communicates 
with two underlying databases: a main, PostgreSQL, database which contains the bulk of the data 
and a second, Oracle, database which contains ligand structure information. The main application 
layer is written in Java, with static pages written in Java Server Pages (JSP),, JavaScript and HTML. 
The curation interface (i.e., the interface used by curators to create and edit the database), is a 
custom-built, standalone Java application with a GUI.

GtoPdb is a substantial curated database: the 2019 release comprises 89 megabytes of data 
contained in 181 tables. As a measure of scope, the Java codebase for the web interface (which 
includes some pages out of the scope of our reimplementation), stands at 17935 lines of code for 
data transformation code; 28819 lines of JSP rendering code; and a data access layer (which also 
contains query code used for the curation interface), consisting of 43129 lines of code, written over a 
period of 16 years.
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(a) Official GtoPdiab (b) Links reimplementoPatdn

Figure 1. Screenshots of offcial GtoPdb application and Links reimplementation

Reimplementing GtoPdb in Links

We now turn our attention to our reimplementation of the GtoPdb frontend in Links. Our 
reimplementation uses an unaltered copy of the PostgreSQL database release.
Figure 1 shows an example page, displaying a view of the ligand information for beclometasone 
dipropionate extracted from the database. Figure 1a shows the offcial version of the page, and 
Figure 1b shows our reimplementation in Links. The same underlying information is displayed on 
each page. The Links version has some minor differences such as different rounding used for 
floating-point numbers, as well as a banner to differentiate it from the offcial version.

GtoPdb Structure

The GtoPdb interface consists of nine main data pages:

Target List 
GtoPdb groups pharmacological targets into different categories including G protein-coupled 

receptors, ion channels, nuclear hormone receptors, kinases, catalytic receptors, transporters, 
enzymes, and other protein targets. This page links to the family list for each type of target.

Family List 
A family is a group of related pharmacological targets. The family list page displays a 

hierarchically-ordered tree of families.

Family Summary 
The family summary page provides summaries of each target in the family, and links to the 

more in-depth object data pages.

Object Data 
In GtoPdb, an object is a pharmacological target such as a receptor. The object data page 

displays all information associated with a target, and is the most complex page. The page can 
render 52 individual properties about each object (for example, associated interactions and 3D 
structures),.
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Disease List 
A list of all diseases in the system.

Ligand Families 
A list of ligands classifed into families.

Ligand List 
A list of all ligands in the system, with the ability to flter by category.

Ligand Data
 Displays data associated with ligands, such as relevant interactions, structural information, and 

a summary of clinical use.

Disease Data 
Displays information about a disease, including references to external databases, related 

pharmacological targets, and ligands known to affect the disease.
The offcial implementation contains additional smaller auxiliary data pages and searching 

functionality, but the nine pages above are the most prominent and involved, so we concentrate on 
these pages for our Links reimplementation.

Language-Integrated Query

In the Java implementation of GtoPdb, all database queries are carried out using SQL prepared 
statements. Our frst major departure from the previous implementation is the use of Links’s 
support for language-integrated query. While language-integrated query is best known in 
Microsoft .NET languages such as C# and F# (Meijer et al., 2006; Syme, 2006),, it is also available 
as part of Links (Cooper, 2009; Lindley and Cheney, 2012),, based on techniques developed 
originally in the Kleisli system (Wong, 2000),.
Instead of constructing SQL statements directly, language-integrated query allows database queries 
to be written as a standard expression in a programming language. In particular, we use a flavour 
of language-integrated query pioneered by Trinder (1991),, who adapts the notion of a list 
comprehension (similar to a mathematical set comprehension), to the setting of relational queries. 
As an example, consider an SQL expression which retrieves the names of all ligands which have 
been approved for use in humans. In SQL, we might write:

SELECT name FROM ligand WHERE approved

Given an appropriate Links declaration of the ligand table, we can write the 
above query as:

query { for (l <-- ligand) where (l.approved) [l.name] }

The query is written as a list comprehension, with elements generated by the ligana table, 
where the where clause flters each element to only consider those which are approved. Unlike 
embedded SQL, the query is also typechecked to ensure the table feld names and query results are 
used consistently in the program.

Differently from most implementations of language-integrated query, Links supports effcient 
nested queries. A nested query is a query whose result type contains collections nested inside other 
collections. (In contrast, an SQL query always returns a flat table: a collection of records of values 
of primitive types such as integers and strings.), To illustrate, the following nested query returns 
records including the ligand name and its set of synonyms:

query {
  for (l <-- ligand)

    [(name = l.name, synonyms =
        for (l2s <-- ligand2synonym)
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          where (l2s.ligand_id == l.ligand_id) 
[l2s.synonym])] }

This query will return a list of records of the form (name,synonyms), in which name is a string 
and syndnyms is a list of strings. A natural, but ineffcient, way to execute such a query is to frst 
retrieve the set of all ligands (with their names and IDs),, and then run one query per ligand to fnd 
its synonyms. In Links, the above nested query is instead transformed to two equivalent SQL 
queries. It is important to note that the shredding technique to implement nested queries proposed 
by Cheney et al. (2014), gives a guaranteed upper bound on the number of SQL queries needed to 
run a nested query: the upper bound is the number of occurrences of collections in the query result 
type, and this is independent of the number of records returned by a query.

A second useful feature of language-integrated query in Links is that certain user-defned 
functions can be used within queries for convenience, and such functions will be inlined to simplify 
the query expression to a form that can be translated to SQL. This relies on query normalisation 
(Cooper, 2009), to generate effcient SQL code directly from query expressions. As a simple 
example demonstrating both nested queries and user-defned functions at once, the nested query 
above can also be written as:

fun getSynonyms(id) {
for (l2s <-- ligand2synonym)
  where (l2s.ligand_id == id)
  [l2s.synonym]

}
query {
  for (l <-- ligand)
    [(name = l.name, synonyms = getSynonyms(l.name))]
}

In this example, this capability makes the query expression longer (but arguably a bit more 
readable due to the extra documentation provided by the function name),; however, such functions 
can also be reused across many query expressions, potentially saving a great deal of code repetition, 
and aiding maintenance.

Example: Listing Ligands

GtoPdb provides functionality for listing all ligands in the database, fltered by category: example 
categories include approved drugs, or ligands relevant to either immunopharmacology or malaria 
pharmacology. Let us consider this page as an extended example.

Each row in the displayed table shows the ligand’s name, unique GtoPdb ID, synonyms or 
trademark names, and icons displaying whether the ligand is an approved drug; contains a 
radioactive or chemical (e.g. fluorescent), label; is relevant to immunopharmacology; is relevant to 
malaria pharmacology; or has an entry in the protein 3D structure database (PDBP),. We can gather 
this information through the use of a single query expression:

query {
  for (l <-- ligand)
  where (ligandFilter(l, filterType))
    [ (id = l.ligand_id, name = l.name, approved = l.approved,
       radioactive = l.radioactive, labelled = l.labelled,
       immuno = l.in_gtip, malaria = l.in_gtmp,
       synonyms =
         for (l2s <-- ligand2synonym)
         where (l2s.ligand_id == l.ligand_id && l2s.display)
         [l2s.synonym],
       hasPDB = not(empty(
         for (p <-- pdb_structure)
         where (p.ligand_id == l.ligand_id)
         [ p ])))
    ]
};
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We begin by querying the ligand table. If the ligand matches a given predicate based on the 
flter type, then the query produces a record with the required information. Of particular interest 
are the syndnyms and hasPDB felds of the output record, which are not felds in the ligand table but 
instead refer to other tables.

The syndnyms feld is a one-to-many relation from ligands to synonyms. As an example, the 
common painkiller paracetamol is also known by the trade names Panadol and Tylenol. The Java 
implementation gathers the relevant synonyms using a PostgreSQL view. To express this nested 
relation in Links, we use its support for nested queries (Cheney et al., 2014),, as explained above, to 
populate the synonyms feld with a collection of all relevant synonyms.

The hasPDB feld should be true if the pdb_structure table in the database contains an entry 
with the same ligand ID as the current ligand. Note that we can use the native Links functions ndtoP 
and emptoPy in Links code; these are translated to SQL EXISTS constraints.

Functional Predicates

Let us revisit how we flter the ligands to display. Some flters are based on boolean flags in the 
ligana table (for example, apprdvea),, or on the toPype feld, and others perform more complicated tests. 
In the Java implementation, such fltering is implemented by building a query using string 
concatenation and Java conditional expressions. For example, to flter all approved drugs, the 
implementation uses code like the following:

if(type.equalsIgnoreCase("Approved")) {
query += " WHERE approved IS TRUE ";

} else if (type.equalsIgnoreCase("Synthetic organic")) {
  query += " WHERE type = ’Synthetic organic’ "
} ...

Each ligand type has a case which adds the correct type into the query, chained as else if 
clauses. Query strings generated in this way could be ill-formed, leading to failure at runtime (for 
example, if spaces between concatenated strings are omitted),. Instead, we can take advantage of the 
fact that Links is a functional programming language, and defne a function that tests whether a 
ligand matches a flter. We begin by defning a variant type (similar to an enum in Java), describing 
each flter:

typename Filter =
  [| Approved | SyntheticOrganic | EndogenousPeptide | Immuno 
| ... |];

We then defne a function called liganaFiltoPer that given an entry in the ligana table, and a flter 
type, returns whether the ligand matches the flter:
fun ligandFilter(ligand, filterType) {

switch (filterType) {
  case Approved           -> ligand.approved
  case SyntheticOrganic   -> ligand.type == "Synthetic organic”
  case EndogenousPeptide  ->

       ligand.type == "Peptide" && isEndogenous(ligand)
  case Immuno             -> ligand.in_gtip
  ...
}

}

Note that the EndogenousPeptide case calls another function isEndogenous, illustrating that 
we can use functions to break the query logic down into smaller parts. The ligandFilter function 
can be used directly in the query, and Links correctly inlines it (and isEndogenous), so that the 
eventual SQL query is similar to the one generated by the Java code. Using the number of lines of 
code as a rough measure of complexity, the Java version needs 145 lines of code to flter the list of 
ligands, whereas the Links version requires only 54, with the additional advantage that Links will 
always generate type-correct queries.
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Displaying a Data Page

We have now seen an example of how Links can be used to implement a GtoPdb data page. More 
generally, in both the Java and Links implementations, the process for displaying each data page is 
as follows:

1. Parse any input arguments to the page request (for example, ligand or object ID),

2. Perform database queries to populate a data model

3. Parse all text felds in order to obtain a list of  any referenced scientifc literature and 
relevant ligands

4. Render the web page content and deliver the response

In the Java implementation, there is a single Java data model used for both the web interface 
and the curation tool, and sometimes this means that additional information must be retrieved but 
is not displayed. In the Links implementation, each page has its own data model based on what is 
to be displayed to the user, but the queries and processing code can be reused over different fles. 
The Java implementation makes use of a data access layer which contains many methods to 
populate the model, whereas each Links page begins with a large nested query followed by a 
processing phase.

Text felds in GtoPdb may contain references to supporting scientifc papers and 
crossreferences to ligands. As an example, consider the following excerpt, detailing comments 
about the agonist interactions targeting the D1 dopamine receptor:

Some substituted benzazepines such as SKF-83959 are G-protein biased 
agonists of the dopamine D<sub>1</sub> receptor and fail to activate 
&beta;-arrestin recruitment <Reference id=28036/>; their ability to signal 
through G<sub>q</sub>-mediated pathways has been controversial <Reference 
id=33435/>.<br><br><Ligand id=6077/>, <Ligand id=9637/> and related 
compounds exhibit slow dissociation rates from the D<sub>1</sub> receptor.

References to scientifc papers are introduced using Reference tags, and references to ligands 
are introduced using the Ligana tag. The text also includes standard HTML tags. The above text 
would be rendered as shown below:

In order to display the text, we need to parse the Reference and Ligana tags, so that the required 
data about the corresponding references and ligands can be fetched in a subsequent query. This 
separate pass allows us to build a sorted, numbered, reference list, rather than storing references 
per data page in the database in a more fragile way.

Evaluation

Our main criterion for success was to ensure that Links is powerful enough to support 
implementing a real-world scientifc database. As our case study manages to implement all key data 
display pages, we consider this objective met.

Nevertheless, it is important to ensure that our cross-tier methodology is not unacceptably 
detrimental to performance. We therefore evaluate our approach on four of the main data pages: 
the object data page; the disease data page; and the lists of all diseases and ligands.
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We evaluate each page with respect to three dimensions:

Query Count 
The number of queries executed when generating a given page. As the nested language-

integrated query approach used by Links ensures that query count is bounded by the number of 
collection types in the result (Cheney et al., 2014),, we would hope that the Links implementation 
would generate substantially fewer queries than constructing queries by hand.

Query Handling Time 
The amount of time spent processing database queries. In the Links implementation, this also 

includes the time spent normalising the query into SQL and parsing the results into Links data 
structures, in addition to query execution itself.

Page Build Time 
The amount of time spent building a page on the server, measured from the point at which the 

request is received until the point before the response is sent to the client. As Links is an interpreted 
language (as opposed to Java, which runs on a virtual machine incorporating a Just-In-Time (JIT), 
compiler),, we would expect page build time to be slower on Links. We show results both including 
and excluding query handling time.

We collect the metrics by adding instrumentation code to the Links interpreter itself, and by 
implementing an instrumented version of the PreparedStatement class in the Java code. 
Measurements were performed on both the Links and Java versions of the code running locally on 
a laptop with an Intel Xeon E-2176M 2.7GHz CPU, and 8GBP of RAM. We used the Python 
pandas library (McKinney, 2010), for data processing, and matplotlib (Hunter, 2007), to generate 
charts. The data generated by our experiments, as well as the code used to generate the charts, is 
publicly available on Figshare (Fowler, 2019),.
Object Data

Figure 2 shows box plots detailing the number of queries, total query handling time, and page build 
time when displaying the object data page for 150 randomly selected object IDs. The data 
represents the arithmetic mean of 15 requests for each page.

Query count
Figure 2a shows the results for the number of queries generated to display the page. As 

expected due to the use of nested queries, the Links implementation generates a lower number of 
queries (median: 108), compared to the Java version (median: 229),. Notably, the query count of the 
Links implementation is much more predictable, with a standard deviation of 43.38 in the Links 
implementation, in contrast to 275.15 in the Java implementation. The maximum query count in 
the Links implementation is 404, and the maximum query count in the Java implementation is 
2549. The outlier in the Java implementation is due to object 262 (the Histamine H1 receptor), 
being associated with an unusually large number of drug interactions: each interaction requires 9 
database queries, along with additional queries to fetch information about the ligands associated 
with the interaction.

Query time 
Figure 2b shows the query handling time for both implementations. The original Java 

implementation has a better median query time of 57.77ms compared to 101.36ms in the Links 
implementation: this disparity is likely due to a combination of query normalisation and 
marshalling the returned values into Links data structures.
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(a) Query count (b) Query handling (c) Page build time d) Page build time
time (excluding queries), (including queries),

Figure 2. Experimental evaluation of implementations (Object Data Page),

Executdn tmes fdr Disease ana Ligana ListoPs

Figure 3. Experimental evaluation of implementations (Disease and Ligand Lists),

Nevertheless, again, performance of the Links implementation is more predictable with a 
standard deviation of 12.29 compared to 204.40 in the Java implementation.
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Page build time 
Figures 2c and 2d show the page build time for both implementations, excluding and 

including query handling time respectively.
As expected, the Java version performs substantially better than the Links version due to the 

maturity of the Java Virtual Machine and associated Java ecosystem. Concretely, the median 
page build time (excluding queries), for the Links version is 340.12ms and the median page build 
time for the Java version is 23.98ms. Additionally, the performance of the Java version is more 
predictable, with a standard deviation of 4.34 compared to 215.80 in the Links implementation.

An additional bottleneck in the Links implementation is the implementation of a parser 
which is run on each text feld in order to extract inline reference and ligand IDs contained 
within text felds. It is likely that improvements in this part of the code could lead to substantial 
performance improvements.

Disease and Ligand Lists

Figure 3 shows the experimental results for the pages listing all diseases and ligands: the data 
displayed is again the mean over 15 iterations.

Query count
The Links implementation substantially outperforms that of the Java implementations: the 

Links implementations use only two queries to gather the information required to display the 
lists, whereas the Java implementation of the disease list requires 8995 queries and the ligand list 
requires 30479. The additional number of queries is because the Java implementation populates 
a model which contains more information than is necessary for the page: as an example, the 
disease list page generates many queries retrieving links to external databases, but these are 
never displayed.

(a) Query count (b) Query handling (c) Page build time d) Page build time
time (excluding queries), (including 

queries

Figure 4. Experimental evaluation of implementations (Disease Data Page),
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Query time
The number of additional queries required in the Java implementations is reflected in the 

time spent performing queries. Concretely, the mean query times in the Links implementation 
were 59.80ms for the disease list and 112.09ms for the ligand list, compared to 1192.15ms for 
the disease list and 7897.51ms for the ligand list in the Java implementation.

Page build time
 As with the object data page, the Links implementation does not perform as well as the Java 

implementation when generating the page, due to the maturity of the underlying technologies. 
In fact, in spite of the large number of queries required, the Java implementation outperforms 
the Links implementation on the disease list (with an overall page generation time of 1483.95ms 
in the Links implementation and 1280.56ms in the Java implementation),.

Disease Data

Figure 4 shows the results for the disease data page. Again, the results represent the arithmetic 
mean over 15 iterations for 150 randomly selected disease IDs.

The fndings are consistent with the previously reported results, with Links performing 
substantially better on query count (Figure 4a), and comparably on query handling time (Figure 
4b),, but worse on page build time (Figure 4c),. The outlier for query count and execution time in 
the Java implementation is Crohn’s disease, which contains substantially more ligand 
interactions than the other disease pages considered. The same disease accounts for the outlier 
in the Links page build time, which is due to the necessity of parsing more description felds.

Related work
Our case study uses Links. There are other cross-tier languages, including Hop (Serrano et al., 
2006),, Ur/Web (Chlipala, 2015),, and Eliom (Radanne et al., 2016),. To the best of our 
knowledge, none of them has been used to implement curated databases.

Language-integrated query support is now being considered in several languages, for 
example including the Quill library for Scala.1  We mentioned Links’s support for nested queries 
as an important advantage of using Links for implementing GtoPdb. Similar techniques offering 
similar guarantees have been proposed by Grust et al. (2010),, with the most recent step in this 
line of work being a language-integrated query library for Haskell called DSH (Giorgidze et al., 
2010),. It might be interesting to conduct a similar case study implementing GtoPdb in Haskell 
using DSH, and compare with the Links version; alternatively it may also be worthwhile to 
develop a Java or Scala implementation of language-integrated query that supports nested 
queries, that could be used natively with GtoPdb or other Java-based systems.

Conclusion and Future Work

In this work, we have produced the frst real-world case study of a curated scientifc database, 
the IUPHAR/BPPS Guide to Pharmacology, in a cross-tier functional programming language. 
Our approach leverages language-integrated query, which makes it possible to write type-safe 
queries instead of manually constructing SQL.

GtoPdb is a substantial curated database, built over a period of 16 years. The current Links 
implementation runs on an unmodifed version of the GtoPdb database release, with the 9 

1 Quill, htps://getoPquill.id/
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major data pages implemented. The codebase of our Links case study currently stands at 10981 
lines of code after around 4 months of effort by the frst author, who had previous experience 
with Links. While it may be tempting to attempt a direct comparison on lines of code for each 
page, such a comparison would be unreliable due to the difference in the structure of the two 
applications.

Finally, we have conducted a performance evaluation and shown that the use of Links does 
not impose unacceptable overheads; indeed, the use of language-integrated query and nested 
queries results in lower query counts and comparable time spent handling queries in general.

Future work 

Our experience shows that Links is up to the task of implementing web application front-ends 
for curated databases, which is prerequisite to our goal of language support for data curation. 
We have already begun implementing the GtoPdb curation interface in Links; our next step is to 
turn our attention to the design and implementation of language features which will aid 
curation, such as archiving, inspired by the work of BPuneman et al. (2004),.

Our work has concentrated on relational databases; we also plan to investigate the theory 
and practice of language-integrated query for NoSQL databases, allowing us to implement case 
studies for a wider range of databases. This requires frst adapting existing work on language-
integrated query from relational to NoSQL data models and query languages.
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