
IJDC | Research Paper

Submitted 8 February 2024 ~ Accepted 27 May 2025

Correspondence should be addressed to Ivar Rummelhoff. Email: ivar.rummelhoff@nr.no

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated

to the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of

Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution

License, version 4.0. For details please see https://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation

2025, Vol. 19, Iss. 1, pp. 16
1 http://dx.doi.org/10.2218/ijdc.v19i1.922

DOI: 10.2218/ijdc.v19i1.922

Reproducible Preservation of Databases
through Executable Specifications

Ivar Rummelhoff, Thor Kristoffersen, Bjarte M. Østvold

Norwegian Computing Center

Abstract

We propose a new preservation method for relational data and a corresponding tool. The method involves

writing a specification that can later be executed by the tool without user interaction, transforming the input

files and databases into an encapsulated package suitable for archiving. Thus, the transformation steps

become reproducible, which facilitates automation by reusing the specifications and allows for an iterative

process, where for each iteration the specification is extended or adjusted and then executed to check that

the result is closer to fulfilling future access requirements.

http://www.ijdc.net/
http://dx.doi.org/10.2218/ijdc.v19i1.922

2 | Reproducible preservation of databases

IJDC | Research Paper

Introduction

Much of the world's information is stored in relational databases. Our work is concerned with the

preservation of the digital records in such databases in a way that ensures both consistent quality

and easy access to the information. More precisely, we focus on how to transform such data into

digital artifacts suitable for archiving—possibly tailored to the expected future access needs. When

such steps are carried out manually, it can lead to unpredictable data quality and put future data

access at risk. To address this, we contribute a novel method for digital preservation of databases

with the following components:

• An executable specification language, DbSpec, for describing the extraction, migration,

transformation and validation of relational data and metadata from databases and other

sources.

• An interpreter for the specification language, i.e., a computer programme that can

automatically and deterministically execute the steps in a specification.

These contributions fill a gap in the existing tool landscape for database preservation in that

they make explicit and reproducible the steps for producing database archives and encapsulated

packages, including integration with other tools and scripts.

The DbSpec interpreter is free and open-source software (FOSS) available at

https://github.com/immortalvm/dbspec. This repository also contains a language reference and

some examples.

Background and Motivation

This work is motivated by the following question: Is there a method for extracting and

transforming relational data for future access that is efficient, reliable, transparent and
reproducible? The method should be useful even in situations where the available time and

resources are scarce. This makes efficiency a priority, but also reliability, as unreliable tools can be

costly. Transparency and reproducibility are important for provenance and trust, much as in

science (Munafò et al., 2017). These qualities should also be reflected in the preserved metadata,

since knowing how the data has been produced is often necessary to be sure what it means. This

can also lead to savings, because the preservation steps can be more easily reused.

Scope

Relational databases are used for many purposes; and sometimes the data we want to preserve is

relational in nature even though it does not currently reside in a relational database management

system (RDBMS). Conversely, such systems also support non-relational data such as XML or

JSON. Functionality for managing these data types has even been included in the SQL standard.

In addition, databases often contain data in custom and/or proprietary formats, whether as “large

objects” stored within the RDBMS or as references to external files.

We are concerned with the extraction, migration, transformation and validation of relational

data for future access. For the most part, this is what we shall mean by the term preservation. In

the DCC Curation Lifecycle Model (Higgins, 2008), such steps would sort under Ingest,

Preservation and Transformation actions. We shall not make this distinction, but whereas in the

lifecycle model a transformation usually describes an action to produce new data after accessing

the preserved data, we are only interested in the transformations happening before or as part of

the preservation process.

https://github.com/immortalvm/dbspec

Rummelhoff, Kristoffersen, Østvold| 3

IJDC | Research Paper

Database preservation projects can be very complex and require both cross-disciplinary and

cross-organisational collaboration. In other cases, it is just the IT department being asked to

produce a simplified extract of some data expected to have future value. This might happen when

an IT system is about to be decommissioned, in which case the preservation effort will be a one-

off event. But even in such scenarios, it is valuable to be able to rerun the preservation steps

without human involvement.

We make no assumptions about the nature of the data or the reasons for preservation.

Therefore, it is mostly outside our scope how the resulting digital preservation artifacts should be

managed. For instance, public records should perhaps be deposited in a certified repository (CRL

& OCLC, 2007), and research data might be uploaded to a service such as Zenodo.
1

 In such

cases, it makes sense to include the submission of data and metadata in the list of preservation

steps. This is especially true if it involves specifying additional metadata. However, in order to

automate such steps, the process must be scriptable—for example, using a public API.

Data Extraction, Formats and Standards

The crudest and cheapest way of preserving a database is to simply store a disk image or a

database backup;
2

 and even when a database has been preserved by other means, it is common to

retain the original, raw data as a precaution. However, it is widely recognised that it can be difficult

to interpret such data in the future. In order to preserve the information, complex extraction steps

are sometimes needed that require a deep understanding of the originating system, the database

schema or specific technologies.

For common formats, the threat of “digital obsolescence” appears to be low (Rosenthal,

2010), especially for those that have open-source implementations. Even the proprietary backup

formats of major commercial RDBMSs will presumably be accessible for the foreseeable future,

but there might be high licensing fees. Thus, the preservation steps are mainly there to (1) ensure

that we preserve the right data and metadata and (2) lower the cost of future use. Traditionally,

three approaches to the preservation of relational data have been considered: migration,

emulation and XML (Digital Preservation Testbed, 2003). In our work, we have concentrated on

preservation using XML—which we believe makes the most sense for long-term preservation—
and on the following standards:

Software Independent Archiving of Relational Databases (SIARD) is an open format

designed for archiving relational databases in a vendor-neutral form (DILCIS Board, 2021c). A

SIARD file is a ZIP64 file containing data, data types, table structure, relations, and views

stemming from an SQL:2008-compliant database and serialised as XML. SIARD 2.2 was

approved in 2021. This is the latest version and the one we have been using. In a conventional

archiving scenario, the SIARD file along with a description of the data content and metadata will

be enclosed in a Submission Information Package (SIP) and submitted to a repository.

Information packages were defined in the somewhat abstract Open Archival Information System

(OAIS) Reference Model. A standardised file format has been proposed by the E-ARK project

and the DILCIS Board (DILCIS Board, 2021b). They have also defined how to include SIARD

files in such packages (DILCIS Board, 2021a). These formats build upon the metadata standards

METS and PREMIS, both from the US Library of Congress.

Pitfalls

Even when using standardised preservation formats, there are things that can go wrong:

Missing information. Databases often contain data one does not wish to preserve, for

example, because they are obsolete, duplicates, of low value, or contain sensitive information.

There is a risk, however, that some information is left out that would be valuable in the future.

1

 Zenodo, operated by CERN: https://zenodo.org/
2

 This would be a form of “bit-level preservation”.

https://zenodo.org/

4 | Reproducible preservation of databases

IJDC | Research Paper

Low-quality or missing metadata. To ensure a low cost barrier for future access, it is important

to include high-quality metadata and documentation. If the quality is poor or if these elements are

missing entirely, it may significantly raise the cost of future access.

Dependencies. Real-life databases often contain dependencies on external systems. If these

dependencies are not properly handled and resolved in some way, there is a risk that the

preserved data will be rendered partially or completely unusable at some point in the future, when

those external systems are gone.

Weak authenticity. The value of a preserved database is limited if it is unknown whether it is a

faithful representation of information contained in the original sources. Thus, the archive should

include information on how it was produced, its provenance.

Manually preserving a database so that the information remains accessible may require a

complex series of extraction, transformation and migration steps. In the end, it might not be clear

even to experts involved exactly what steps were taken—which undermines authenticity. It is also

a practical problem in case the process must be repeated, for example, because a defect has been

found.

E-ARK information packages may contain event elements describing the preservation actions

taken. These follow the PREMIS standard (PREMIS Editorial Committee, 2015). There is also a

provenance framework, PROV by W3C, and extensions such as PROV-IO
+

 (Han et al., 2023)

that allow for more details. However, neither representation is executable, so reproducibility is not

guaranteed.

Databases and Datasets

A preserved relational database may often be referred to as a dataset; but in most cases a dataset is

just a set of tables or multi-dimensional arrays. Databases usually have a more complex structure,

and the database schema can be valuable as metadata expressing the underlying assumptions of

the system that produced the data. Nevertheless, one approach to preserving databases involves

migration to a “dimensional model” (Ur, Muzammal, David, & Ribeiro, 2015). This means

applying techniques such as denormalization that are most commonly used for creating data

warehouses. The goal is to make the information in the database more accessible, but the result—
which is more like a dataset—has less structure and more redundant data.

The DbSpec Method

Overview

The solution we propose is to specify each preservation step in a formal language, DbSpec, and

execute these steps using a software tool known as an interpreter (see Figure 1). Thus, the job of

the experts goes from performing manual steps to expressing those steps through the

specification. At various points, draft specifications can be executed and the result checked using

tests that are themselves part of the specification. This is repeated until the result is satisfactory. As

the specification embodies all the work done by the experts, these iterations have low marginal

cost, although there may be waiting time involved, especially for large databases. The process also

becomes more transparent, making the specification (and how it evolves over time) visible to all

project members; but most importantly, the specification can be included in information packages

as provenance information, showing precisely how the contents were produced.

Rummelhoff, Kristoffersen, Østvold| 5

IJDC | Research Paper

Figure 1. Automated preservation process.

Specification Language

While readable for humans, a DbSpec specification can be seen as a computer programme. As

such, the language is inspired by the scripting language Python, but it is simpler and geared

towards the preservation of relational data. For the most part, a DbSpec specification describes a

series of steps to be executed sequentially; but in order to facilitate reuse, the language also has

conditional branching (if-then-else) and a basic looping construct.

When a specification is executed, many steps will be delegated to other tools. Conceptually,

this is similar to languages for automating sequences of invocations of command-line tools, but the

DbSpec mechanism is to use embedded scripts. These come in two flavours: SQL and other

executable scripts. While SQL statements and queries will be sent to the relevant RDBMS for

execution, other scripts are executed in subprocesses by external tools (e.g., Bash or Python). In

both cases, there are simple ways to provide input and receive output. This seamless integration of

embedded scripts means that a specification can provide a unified view of fundamentally different

steps.

The DbSpec language also contains other elements, such as statements for establishing

database connections, making assertions, and logging. Assertions should be used to check

representation invariants that are not guaranteed by database constraints. This is especially

important when planning to reuse the specification with other data sources.

The Structure of a Typical Specification

While we think DbSpec will prove useful in a range of settings, the focus so far has been on

preserving data from relational databases as SIARD archives. First, a staging database is created

for the database schema and contents we want to preserve. When possible, we suggest restoring a

database backup. Next, additional data can be imported using embedded scripts. The staging

database is then transformed, and there should be assertions expressing pre- and postconditions.

Additional metadata may be associated with the database objects, and a SIARD archive is

produced, both using special language constructs. Finally, an information package is compiled

using another embedded script.

Figure 2 shows some of the steps in a simple specification. Notice how the embedded scripts

are separated from the other parts of the specification using indentation only. When advanced

extraction and transformation steps are needed, the specification will be more complex. DbSpec

does not eliminate the need for technical expertise. There are no high-level constructs or

graphical user interfaces that try to guess what you want. Instead, this must be expressed in precise

terms—using the same or similar tools and technologies as system developers and database

administrators.

6 | Reproducible preservation of databases

IJDC | Research Paper

Figure 2. Excerpts from a simple DbSpec file.

Reproducibility

The production of information packages and other digital artifacts using DbSpec is repeatable in

the sense that re-executing the specifications with the same input in an identical operating

environment should yield similar results. Ideally, only preservation metadata should change—
such as timestamps—but embedded scripts may also introduce randomness. Avoiding this is the

responsibility of those writing the specification. Even in special cases when, say, one only wants to

preserve a random selection of entries, this can be made deterministic by using a pseudo-random

generator with a fixed seed value.

The next challenge is how to ensure that the environment is the same. For instance, we

recommend that the RDBMS used for the staging database is the exact same version as in the

originating system. One solution might be to use container technologies (discussed below).

However, in complex data extraction scenarios, the environment might have to include a

complete, running system—or even other systems, when there are external dependencies. In

these situations, we recommend that the specification be divided into two stages, where the full

environment is only needed for the first stage. This will produce the input necessary for the

second stage, which should contain most of the preservation steps.

Splitting the specification is also a way to ensure future access to input that is close to the

original in cases when the complete input to the first stage cannot be preserved, for example, for

Rummelhoff, Kristoffersen, Østvold| 7

IJDC | Research Paper

legal reasons: we then recommend that the output from the first stage as well as any additional

input to the second stage be included in the information package together with the specifications

and container definitions for each stage.

Testing and Evaluation

The DbSpec language and interpreter has gone through three test phases, with increasing realism.

This has led to many improvements and lent weight to the usefulness of our approach, even

though the testing so far has not been done independently of this project or as part of an actual

preservation effort.

Initial Example Specifications

During the initial development, we produced two basic examples of DbSpec specifications using

freely available PostgreSQL databases.
3

 However, we quickly realised that while readable, the way

DbSpec uses indentation makes it difficult and error-prone to write specifications without editor

support. Fortunately, we were able to repurpose the parser into an extension for the text editor

Emacs, which we have bundled with the interpreter. This highlights DbSpec keywords, syntactical

structure and errors, but it lacks such support for SQL and other languages used in embedded

scripts (see Figure 3). In some cases, the preferred solution has been to develop embedded scripts

using other tools before copying the text into the DbSpec file.

Figure 3. Excerpt from example DbSpec specification in the Emacs editor.

We also discovered that the software we currently rely on for generating SIARD files did not

always work as expected. For example, when using PostgreSQL for the staging database, the

metadata of views do not contain their defining queries, and materialised views are completely

ignored.
4

 In one of the examples, we have therefore shown how such information can instead be

included using embedded scripts, but this is not ideal.

3

 These have been made available alongside the source code of the interpreter. See

https://github.com/immortalvm/dbspec/tree/main/examples, folders ‘dvdrental’ and ‘adventureworks’.
4

 Bug report: https://github.com/sfa-siard/SiardGui/issues/65

https://github.com/immortalvm/dbspec/tree/main/examples
https://github.com/sfa-siard/SiardGui/issues/65

8 | Reproducible preservation of databases

IJDC | Research Paper

DbSpec Evaluation

A limited evaluation of the DbSpec approach—including the language, interpreter and

recommendations—was performed during the autumn of 2024. As part of the evaluation, the

evaluator wrote a DbSpec specification for the example database Northwind Traders for

Microsoft SQL Server. While generally positive, the evaluation also observed that no testing had

yet been performed with realistic production databases. Those may have hundreds of tables and

be very hard to understand, in which case, writing DbSpec specifications seems to require a lot of

potentially error-prone manual work. The evaluation also revealed several software errors that

have since been fixed.

Case Study (2025)

Lastly, we have used DbSpec to curate and preserve parts of the actual production database of the

Historical Population Register in Norway (Norwegian: Historisk befolkningsregister, HBR for

short).
5

 Figure 3 shows a part of this specification. Whereas the size of this database was moderate

(22 GiB) compared to really large databases, it was significantly larger than the example databases

used earlier. It also involved a different RDBMS (MariaDB) and had some issues that are

common in real-world database systems:

• Partially outdated documentation and almost no descriptions of the tables and columns in

the database itself.

• Columns and whole tables that are no longer or not yet in use.

• Unclear representation invariants; few constraints other than primary keys.

• Secondary keys used as foreign keys.

• No database objects other than tables (e.g., views or functions).

• Inconsistent naming conventions (e.g., mixing Norwegian and English).

• Large variation in data quality.

• Dependence on other data sources (e.g., through unexplained region codes).

On the other hand, the number of tables was quite low (24), and some of the developers were

available to answer questions. Alas, due to limited time and resources, we had to prioritise the

testing of DbSpec over the preservation outcome; and since the work was not prompted by the

needs of the data owner or constrained by regulations, the preservation decisions were somewhat

arbitrary, and we did not properly test the hypothesis that DbSpec can boost communication

between stakeholders and experts. However, we did observe that when making substantial

transformations, the amount of embedded SQL can make the specification unwieldy and less

suitable for such exchanges.

The case study prompted a number of simplifications and other improvements to the

language semantics and the interpreter.
6

 We also identified some issues that could not be resolved

“on the fly”. In particular, the size of the database made it impractical to execute the whole

specification for every update, but the current alternatives are not very good either (e.g.,

commenting out parts of the specification or splitting it into multiple files). The size also slowed

down the process of understanding the database and deciding what to do with it. For example,

5

 The database contains public information which is made available at https://histreg.no/ (which is powered

by this database), and we have made the DbSpec script available alongside the other examples, but the

database dump it relies on is not public.
6

 See https://github.com/immortalvm/dbspec/releases for details.

https://histreg.no/
https://github.com/immortalvm/dbspec/releases/tag/v1.3.1

Rummelhoff, Kristoffersen, Østvold| 9

IJDC | Research Paper

SQL queries for checking (presumed) representation invariants could take several minutes. On

the positive side, the SIARD extraction worked better than for the PostgreSQL example

databases. All in all, DbSpec made it easier to properly structure and document the preservation

steps, but the process is still slow and labour-intensive.

Discussion

In this section, we will discuss in more detail the rationale behind DbSpec, some issues that have

not yet been fully resolved, and a few ideas for future work.

Avoiding the Pitfalls

Above we mentioned four things that can go wrong when preserving relational data. Here are

some ways these risks can be reduced when using DbSpec:

Missing information. DbSpec promotes engaging with the data instead of simply attempting to

preserve everything as is. This will often involve throwing some data away, but this might actually

increase the information in the archive—for example, by resolving inconsistencies—at least if an

initial, native backup is also preserved. When some of the input data should not be preserved in

any form or when it must be extracted from external data sources, we recommend splitting the

specification (cf. ‘Reproducibility’ above).

Low-quality or missing metadata. Metadata statements make it easy to add documentation

strings and other metadata to the generated SIARD archives. Moreover, DbSpec specifications

may contain transformations that make the database schema more valuable as metadata.

Dependencies. DbSpec also facilitates transformations that eliminate dependencies on

external data sources, making the archive self-contained. (Nevertheless, one should keep the

external references—especially if the external data source contains relevant information that

cannot be included in this archive, e.g., for legal reasons.)

Weak authenticity. We express the preservation steps in terms of an executable specification

that can be preserved alongside the data (see ‘Reproducibility’ above, and also ‘Data Protection

and Provenance’ below).

SIARD is not a Backup Format

A transformation action in the DCC Lifecycle Model is described as a future event: when new

data is created from what was preserved. The idea is perhaps that what we preserve should be as

close to the original as possible. Every transformation can lead to loss of information and

therefore also of authenticity. This might also be the reason why tools for creating SIARD

archives seem geared towards preserving the original database as is—postponing any

transformations to the future, after the database has been restored from the SIARD archive to a

suitable RDBMS. However, this approach can be risky. The SIARD file may not contain all the

relevant data and metadata. Perhaps the data was not even in the original database, but in external

files or systems that are no longer available. Also, when the original system is gone, we may no

longer be able to extract correct information from the data we do have.

Instead, we strongly believe that some transformations should be considered preservation

steps, executed in an environment as close to the original system as possible, and specified using

DbSpec. For reproducibility, we also recommend including in the information package a “native”

backup of the original database as well as any other input files. This is in accordance with the

CITS SIARD standard, where such files can form a separate “representation” (DILCIS Board,

2021a).

10 | Reproducible preservation of databases

IJDC | Research Paper

Containerisation

For reproducibility, it is not always enough to know the input and the preservation steps. The

operating environment is important as well. To some extent, this can be specified using assertions,

but a better option is arguably to use so-called “OS-level virtualisation” with isolated and fully

specified environments called containers. Using containers, one can ensure that each specification

is executed in the intended operating environment. Since a container definition is itself an

executable specification, it should be included in the information package alongside the DbSpec

file—as “preservation metadata”.

In the initial examples (discussed above), we have shown how to achieve this with the help of

the containerisation software Docker.
7

 With Docker, each container is an instance of an image,

and what we referred to as a container definition is a set of instructions on how to build one or

more images, known as a Dockerfile. We build two images.
8

 The first starts by setting up the

operating environment for the preservation steps. This must include the DbSpec interpreter and

all the input files. Next, the specification is copied into the image, the RDBMS is started, and the

specification is executed. The second image copies the DbSpec output from the first so that this

output can be saved to disk as part of building the images. In other words, there is no reason to

create actual containers other than to inspect the current state when developing specifications

iteratively. If executing the draft specification from start to finish is slow, it can be split into

multiple sub-specifications during development in order to exploit the caching mechanism of

Docker.

 Unfortunately, virtualisation is not always an option. As mentioned above (under

‘Reproducibility’), some preservation steps might have to be executed in an environment which is

not easily reproduced; but in some cases, it can still be done if instead of lightweight containers,

we use full-fledged virtual machines, for example, specified and managed through the ‘libvirt’

virtualisation API.
9

Iterative Development and Executable Specifications

Successful database preservation is contingent on informed decisions regarding what to preserve,

correct and efficient execution of these decisions, and validation. This is similar to software

development projects, where iterative and incremental development is the norm; even more so

when the implementation is in terms of executable specifications, which we have shown facilitate

such iterations. Notice, however, that in software engineering, executable specifications are usually

understood as requirements expressed in such a way that they can also be executed as automated

acceptance tests—usually in terms of concrete examples (Adzic, 2011). This would also be

valuable in many database preservation projects, but we have not considered how such tests might

be integrated with DbSpec.

In many cases, the preservation effort is not a one-off event. If the whole process must be

repeated at regular intervals, one should be able to use the previous specification as a starting

point, adjusting only for structural changes, for example, to the database schema. Even if the

preservation is not done very often, we recommend keeping the specification in sync with the

database and re-executing it as part of the testing when there are changes.

Why Another DSL?

DbSpec is a domain-specific language (DSL), but in principle one could use a general-purpose

scripting language instead (e.g., Python), or even a compiled language. Another option would be

7

 Docker, Inc.: https://www.docker.com/
8

 In fact, we build six images in total: first, one containing the DbSpec interpreter, next, one for the parts

that can be shared between the two examples (inheriting from the first), and finally, two for each example

(defined in one Dockerfile per example).
9

 See https://libvirt.org/.

https://www.docker.com/
https://libvirt.org/

Rummelhoff, Kristoffersen, Østvold| 11

IJDC | Research Paper

to define a library/extension for a programming language, a so-called “internal DSL”. In complex

data extraction scenarios, the best option might be to use the programming language of the

originating system—at least for the initial preservation steps—as this would make it easier to reuse

or adapt existing source code and libraries. However, using an “external” DSL has some

advantages:

Readable syntax. Since the new syntax does not have to be compatible with an existing

language, we can optimise for readability—that is, make sure that the preservation steps can be

expressed clearly and succinctly.

Simple overall structure. Whereas the embedded scripts can be arbitrarily complex, DbSpec

itself is very simple and easy to understand. This also makes it easier to develop tool support for

the language, for example, within IDEs and text editors other than Emacs.

Language agnostic. Except for special handling of SQL, DbSpec treats every scripting

language the same. Mixing languages is fine, too.

Easy to extend and adjust. With a small DSL, it is easier to adjust the syntax or extend the

language with new constructs that are also readable.

Taken together, we think using DbSpec can improve communication both with future users

of preserved databases and within ongoing database preservation projects, possibly even within a

broader database preservation community. This facilitates shared understanding and informed

discussions, even in preservation projects that require cross-disciplinary and cross-organisational

collaboration. Thus, we hope that DbSpec specifications may serve as a form of “boundary

objects” (Francis & Kong, 2014). That being said, testing has shown that while DbSpec promotes

a simple overall structure, this is less apparent when the specifications get long, with possibly quite

complex embedded scripts. As a remedy, we are considering adding new language constructs for

indicating sections or moving parts of the specification to separate files.

SIARD Output and Metadata

Even though DbSpec might also be used for other database transformation and preservation

tasks, the language is currently geared towards creating SIARD archives—with special syntax for

producing archive files and for specifying additional SIARD metadata. A challenge when

producing these archives is that the format is based on the SQL:2008 standard, which all major

RDBMSs diverge from in some ways. Thus, the process requires RDBMS-specific conversions of

both the data and the database schema. In the DbSpec interpreter, this has been solved by

(re)using components from SIARD Suite (Swiss Federal Archives, 2023), an existing software tool

for producing database archives of existing databases.

Relying on external SIARD components limits the control we have over the resulting archive.

For example, we are not able to limit the extraction to some database schemas
10

 or to set certain

metadata fields, such as ‘producerApplication’. Furthermore, the automatic conversions and “best

effort” approach of SIARD Suite is at odds with our recommended strategy of making such

decisions explicit. This was highlighted during testing when it was discovered that SIARD Suite

does not extract any view queries from PostgreSQL databases. Going forward, we see two options:

either incorporate the SIARD extraction fully into the DbSpec interpreter—possibly using the

SIARD Suite source code as a starting point—or remove the special syntax for producing SIARD

archives altogether, leaving this to embedded scripts.
11

Preserving data has limited value if no one knows what they mean or whether the information

can be trusted. For relational data, one first needs to know the structure of the database—the

schema. This is mandatory metadata in SIARD archives. In addition, there can be textual

descriptions of each database object, information about the database as a whole, and some

information about the archival process—such as who carried it out. When creating SIARD

10

 Instead, the DbSpec user must make sure that the database user/account only has access to the database

objects they want to preserve.
11

 Such scripts might invoke SIARD Suite explicitly via SiardFromDb/siard-from-db.

12 | Reproducible preservation of databases

IJDC | Research Paper

archives using DbSpec, it is even possible to include the specification itself,
12

 but it makes more

sense to wrap both the specification and the SIARD file in an information package. DbSpec does

not have built-in support for compiling such packages or the METS/PREMIS metadata inside,

but it can be done manually using embedded scripts.
13

Data Protection and Provenance

The SIARD archives created by DbSpec include information about (SQL) users, roles and

privileges. We consider adding an option to prevent this. However, these features can be useful

for managing access to sensitive data. The SIARD format does not support other access control

features such as row-level security, which is not yet part of the SQL standard. Database

transformations must be used for such information to be preserved, such as adding a column for

the access permissions.

The SIARD format does not enforce any access restrictions, meaning anyone with access to

the archive can read all the data. While there might be ways to solve this using encryption

(assuming proper key management), a more straightforward solution would be to create multiple

versions of the archive. For example, one version could contain all data, while another, with

sensitive information removed, could be made publicly available. This can be achieved with a

single specification.

Additionally, we aim to ensure that the final output—presumably one or more information

packages—(1) was produced by a trusted entity, (2) has not been tampered with, and (3) is indeed

the result of running DbSpec in the right environment and with the correct input. While (1) and

(2) can be achieved using digital signatures, this is not enough for (3). Ideally, one should be able

to execute the specification and get the same result (cf. ‘Reproducibility’). How to achieve

sufficient assurance when this is not possible (e.g., for an initial preservation phase) is beyond the

scope of this text; but one idea would be to adapt the framework SLSA,
14

 which tries to solve

similar problems for software artifacts.

Limitations and Future Work

Despite recent progress, the DbSpec language and interpreter should be considered prototypes.

Testing has been limited—for example, the interpreter has mostly been tested under Linux.

There are also some inconvenient limitations, such as too little control over the generated SIARD

files and no built-in support for creating information packages. Many common tasks must be

handled using embedded scripts. Also, even though combining DbSpec with Docker works

reasonably well, more could be achieved with tighter integration.
15

From a theoretical perspective, DbSpec can be seen as a tool for data exchange, that is, “the

problem of taking data structured under a source schema and creating an instance of a target

schema that reflects the source data as accurately as possible” (Fagin, Kolaitis, Miller, & Popa,

2005). Since that seminal article, several tools and formalisms have been put forward for

expressing such transformations precisely and ensuring correctness. Rather than formulating the

transformation steps directly using SQL, the desired relationship between input and output is

expressed declaratively—using examples or logical expressions—and correct SQL is generated

automatically. This is perhaps more useful in a migration scenario where the target schema is

known in advance, than for database preservation where one often has to deal with nonstandard

12

 SIARD archives may contain “additional files, such as style sheets” in the ‘header’ directory.
13

 In examples/adventureworks/package.dbspec, we sketch how to do this using eArchiving Tool Box (see

https://github.com/E-ARK-Software/eatb).
14

 See https://slsa.dev/ (Supply-chain Levels for Software Artifacts).
15

 In the process we might switch to a different virtualization platform, such as Podman or ‘libvirt’.

https://github.com/E-ARK-Software/eatb
https://slsa.dev/

Rummelhoff, Kristoffersen, Østvold| 13

IJDC | Research Paper

features of the RDBMS.
16

 Nevertheless, it would be interesting to consider how declarative data

exchange might be integrated into DbSpec.

Within the iDA project, DbSpec will also be used to specify interfaces for retrieving data from

the preserved databases, potentially in the far future. For this purpose, the language also includes

“Command” statements not discussed here. The DbSpec interpreter is available as open-source

software under the CDDL licence at:

https://github.com/immortalvm/dbspec

This Git repository also includes a short manual, the Emacs extension, the DbSpec parser (as

a submodule), and a few examples.

Related Work

Inspirations for our approach to database preservation have been the discussion of boundary

objects in (Francis & Kong, 2014) and a draft report from the relational database archiving interest

group of the DILCIS Board describing the use of SIARD in several European countries, (Groven

et al., 2020). The DbSpec interpreter can be seen as an extension of existing software, most

importantly SIARD Suite (Swiss Federal Archives, 2023), which can be used for producing

database archives from existing databases. Database Preservation Toolkit (DBPTK) can be used

for producing SIARD archives much in the same way (Ramalho, Ferreira, Faria, & Ferreira,

2020). It has some more advanced options and seems more flexible in general, but it has not yet

been updated to the latest version of SIARD (2.2). As mentioned above, the DbSpec interpreter

uses components from SIARD Suite for producing SIARD files.

In addition to the command-line tools for archiving (and restoring) databases, both DBPTK

and SIARD Suite have desktop applications where one can inspect SIARD archives and edit their

metadata. There is no support for transformations, data validation or combining data from

multiple sources; but OpenRefine (Antonin Delpeuch et al., 2023) does something similar for

datasets, that is, individual tables of data. This is an application where the user can explore and

transform their dataset and export the result in various formats. What makes it similar to DbSpec

is that these transformations are all recorded and can be reused with other datasets (Li &

Ludäscher, 2023). However, OpenRefine is not suitable for transforming whole databases; and

the transformations supported are quite limited.

At the other end of the spectrum are the more general “scientific workflow systems”. Of

these, it seems DbSpec has the most in common with Common Workflow Language (CWL) (see

Crusoe et al., 2022). Database transformation and preservation workflows can be expressed more

easily and directly in DbSpec due to its built-in constructs for database connections and

embedded scripts, but scientific workflow systems with built-in support for performing tasks in

parallel or in the cloud might be better suited when the amount of data is very large. Combining

the two approaches—for example, via CWL scripts embedded in DbSpec—is something we

would like to explore.

DbSpec is not the first computer language where one can embed code written in other

languages. Other examples include inline assembly in C, HTML in PHP, and so forth.

Syntactically, DbSpec is also similar to “literate programming” (Knuth, 1984), where the source

code is embedded in a document intended for humans to read. In DbSpec, as in most

programming languages, it is the other way around, with comments embedded in the source code.

However, we are considering adjusting the language to give such texts a more prominent role.

Ideally, they should not only describe the preservation steps, but also the rationale behind them.

This might also serve as a foundation for delegating parts of the DbSpec specifications to large

language models (LLMs) as in Shi et al. (2024).

16

 When a database uses features of the RDBMS that are not part of the SQL standard, we recommend

changing this before producing the SIARD representation. In such cases, the DbSpec specification will

usually have to include embedded scripts with nonstandard SQL.

https://github.com/immortalvm/dbspec

14 | Reproducible preservation of databases

IJDC | Research Paper

Conclusion

We have presented a new method for database preservation, by which we mean the extraction,

transformation and validation of relational data for future access. The method involves composing

executable specifications in a new domain-specific language, DbSpec. This has several advantages

compared to more manual approaches. The process becomes more reliable, and the specification

doubles as precise documentation of each preservation step—increasing the value of the

preserved data. In most cases, it is also more efficient since the process is more easily repeated.

Specifications written in DbSpec are easy to read and have a simple overall structure. This makes

it easier to maintain a shared, high-level view of the preservation steps than when using a general

programming language, other workflow languages or a collection of individual scripts. We also

believe that it makes the specification more valuable as metadata.

From a quality assurance point of view, our method establishes a controlled, repeatable

process suitable for integration into a comprehensive quality assurance programme. As long as the

original database exists, the preservation steps can be reproduced at low marginal cost. A

structured process of transformation and testing can be applied according to the organisation's

quality standards. This reduces the probability of defects in the preserved database and hence the

risk that data access will be hindered in the future, when the original database is no longer extant.

Acknowledgements

This work is part of the project Immortal Database Access supported by the Eurostars

programme, project number E1622 iDA. We would also like to thank Arne–Kristian Groven for

valuable input and discussions.

References

Adzic, G. (2011). Specification by example: How successful teams deliver the right software.

USA: Manning Publications Co.

Delpeuch, A., Morris, T. Huynh, D., Weblate (bot), Mazzocchi, S., … Chandra, L. (2023).

OpenRefine/OpenRefine: OpenRefine v3.7.7. Zenodo. doi: 10.5281/ZENODO.10220116

CRL, & OCLC. (2007). Trustworthy Repositories Audit & Certification: Criteria and Checklist.
The Center for Research Libraries and Online Computer Library Center, Inc.

Crusoe, M. R., Abeln, S., Iosup, A., Amstutz, P., Chilton, J., Tijanić, N., … The CWL

Community. (2022). Methods included: Standardizing computational reuse and portability

with the common workflow language. Communications of the ACM 65(6), 54–63.

Digital Preservation Testbed. (2003). From digital volatility to digital permanence: Preserving
databases. The Hague: ICTU Foundation.

DILCIS Board. (2021a). CITS SIARD: E-ARK Content Information Type Specification for
Relational Databases using SIARD. Digital Information LifeCycle Interoperability Standards

Board. Retrieved from https://dilcis.eu/content-types/cs-siard

http://dx.doi.org/10.5281/ZENODO.10220116
https://dilcis.eu/content-types/cs-siard

Rummelhoff, Kristoffersen, Østvold| 15

IJDC | Research Paper

DILCIS Board. (2021b). E-ARK SIP: Specification for submission information packages. Digital

Information LifeCycle Interoperability Standards Board. Retrieved from

https://earksip.dilcis.eu/

DILCIS Board. (2021c). SIARD format specification. Digital Information LifeCycle

Interoperability Standards Board. Retrieved from https://siard.dilcis.eu

Fagin, R., Kolaitis, P. G., Miller, R. J., & Popa, L. (2005). Data exchange: Semantics and query

answering. Theoretical Computer Science 336(1), 89–124. doi: 10.1016/j.tcs.2004.10.033

Francis, P., & Kong, A. (2014). Making the strange familiar: Bridging boundaries on database

preservation projects. Proceedings of the 11th International Conference on Digital

Preservation. Presented at the iPRES 2014.

Groven, A.–K., Merenmies, M., Ovaska, V.-M., Hovdan, A. K., Alvik, L. J., & Rätsep, L. (2020).

Preserving databases using SIARD: Experiences with workflows and documentation practices.
DILCIS Board. Retrieved from https://dilcis.eu/content-types/cs-siard

Han, R., Zheng, M., Byna, S., Tang, H., Dong, B., Dai, D., … Wolf, M. (2023). PROV-IO+: A
Cross-Platform Provenance Framework for Scientific Data on HPC Systems. arXiv. doi:

10.48550/arXiv.2308.00891

Higgins, S. (2008). The DCC Curation Lifecycle Model. International Journal of Digital Curation

3(1), 134–140. doi: 10.2218/ijdc.v3i1.48

Knuth, D. E. (1984). Literate Programming. The Computer Journal 27(2), 97–111. doi:

10.1093/comjnl/27.2.97

Li, L., & Ludäscher, B. (2023). On the reusability of data cleaning workflows. International
Journal of Digital Curation 17(1), 6. doi: 10.2218/ijdc.v17i1.828

Munafò, M. R., Nosek, B. A., Bishop, D. V., Button, K. S., Chambers, C. D., Percie du Sert,

N., … Ioannidis, J. (2017). A manifesto for reproducible science. Nature Human Behaviour
1(1), 1–9.

PREMIS Editorial Committee. (2015). PREMIS Data Dictionary for Preservation Metadata,
Version 3.0. Library of Congress. Retrieved from Library of Congress website:

https://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf

Ramalho, J. C., Ferreira, B., Faria, L., & Ferreira, M. (2020). Beyond Relational Databases:

Preserving the Data. New Review of Information Networking 25(2), 107–118. doi:

10.1080/13614576.2021.1919398

Rosenthal, D. S. H. (2010). Format obsolescence: Assessing the threat and the defenses. Library
Hi Tech 28(2), 195–210. doi: 10.1108/07378831011047613

Shi, K., Altınbüken, D., Anand, S., Christodorescu, M., Grünwedel, K., Koenings, A., Naidu, S.,

Pathak, A., Rasi, M., Ribeiro, F., Ruffin, B., Sanyam, S., Tabachnyk, M., Toth, S., Tu, R.,

Welp, T., Yin, P., Zaheer, M., Chandra, S., & Sutton, C. (2024). Natural Language Outlines
for Code: Literate Programming in the LLM Era. [Preprint. To appear in 33rd ACM
International Conference on the Foundations of Software Engineering (FSE
Companion ’25)]. ArXiv. doi: 10.48550/arXiv.2408.04820

https://earksip.dilcis.eu/
https://siard.dilcis.eu/
http://dx.doi.org/10.1016/j.tcs.2004.10.033
https://dilcis.eu/content-types/cs-siard
http://dx.doi.org/10.48550/arXiv.2308.00891
http://dx.doi.org/10.48550/arXiv.2308.00891
http://dx.doi.org/10.2218/ijdc.v3i1.48
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.1093/comjnl/27.2.97
http://dx.doi.org/10.2218/ijdc.v17i1.828
https://www.loc.gov/standards/premis/v3/premis-3-0-final.pdf
http://dx.doi.org/10.1080/13614576.2021.1919398
http://dx.doi.org/10.1080/13614576.2021.1919398
http://dx.doi.org/10.1108/07378831011047613
https://doi.org/10.48550/arXiv.2408.04820

16 | Reproducible preservation of databases

IJDC | Research Paper

Swiss Federal Archives. (2023). SIARD suite. Retrieved from

https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html

Ur, A., Muzammal, M., David, G., & Ribeiro, C. (2015). Database Preservation: The DBPreserve

Approach. International Journal of Advanced Computer Science and Applications 6(12). doi:

10.14569/IJACSA.2015.061235

https://www.bar.admin.ch/bar/en/home/archiving/tools/siard-suite.html
http://dx.doi.org/10.14569/IJACSA.2015.061235
http://dx.doi.org/10.14569/IJACSA.2015.061235

