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Abstract 
As datasets have become a more significant aspect of Open Science, attention has turned to 
the data transformations that drive their creation. Li and Ludäscher have pointed out the 
importance of identifying data cleaning workflows as a series of modular transformations 
that can be extracted for reuse. This modular approach aids reproducibility and allows for 
transparency in data provenance. However, the constantly evolving nature of data science 
technology means that even once these modules have been identified and implemented, 
their functionality must be ported to new platforms as old ones become less applicable or 
less common in a field of study. When these transformations take place, it is important to 
consider not only practicality and functionality, but also transparency within a data 
processing team. Clarity of communication within a team is the first step towards providing 
clear and transparent documentation to the end user. This case study of an updated 
workflow process for a long-running longitudinal health and well-being study provides 
practical examples of these principles.  
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Introduction and MIDUS Overview 

As research datasets get larger, the need for automation and data standardization through 
quality control practices and data cleaning becomes increasingly clear. For smaller datasets, 
quality control can be manual and even in some cases indistinguishable from field editing or 
other standard publication prep. However, as datasets become larger and are recognized as 
valuable in their own right, the need to standardize and automate even basic data quality checks 
becomes more urgent and more identifiable as a curation activity separate from, though integral 
to, the analysis required for research publication. As Li and Ludäscher have pointed out (2022), 
these initial cleaning activities are important provenance information in the lifecycle of the 
published dataset, and tracking these actions is important to data curation transparency. As the 
value and lifecycle of data communities becomes an established model in the data curation field 
(Ruediger et al., 2022), it is important to consider the internal transparency of data curation 
practices as a part of maintaining community access to consistent, high-quality data. Combining 
the modular data cleaning model with the continuing demands of a mature data community 
allows our data curation processes to grow with the scope of our data collection and delivery 
mechanisms. This detailed case study provides an example of using an existing modular 
understanding of the cleaning process to allow a workflow to be updated in a way that still 
leverages the skillset of the existing data cleaning team. 

Midlife in the United States (MIDUS) Creates Public Datasets 

The Midlife in the United States (MIDUS) study is a longitudinal study run out of the Institute 
on Aging at the University of Wisconsin. It has been following several large national cohorts of 
subjects as they age, with the first (Core) cohort being recruited in the 1990s and the second 
major cohort (Refresher) recruited in 2012. As the study has continued, the range of data 
collected has also grown. The initial sample participated in a psychological assessment in the 
first wave of data collection. Subsequent waves have broken out large sub-samples that have 
participated in various additional projects collecting daily stress, biomarker, genetic, and 
neurological data. After each wave of data collection, data gathered by each sub-project is 
cleaned, metadata and data quality flags are set, and the data is aggregated, de-identified, and 
released as a public dataset. Depending on the metric, de-identified raw data is also available on 
request.  

This paper focuses on the cleaning process used by the data processing staff working for the 
Biomarker sub-sample. The Biomarker project sub-sample typically includes around a thousand 
subjects per wave of data collection, each of whom is associated with approximately 3,000 
variables in the Biomarker project alone. This sub-sample has been running for almost 20 years. 

Because the MIDUS study has been in the field for so long, and because, as a longitudinal 
study, the data from each wave of collection needs to be as directly comparable as possible, a 
number of best practices have been established over time. The goal of these best practices was to 
ensure that data collection and cleaning operations were applied consistently. An outcome of 
that goal has been modular, reusable data cleaning workflows from one wave of data collection 
to the next. This cleaning has largely been a semi-manual process. As the volume of data has 
increased (along with a recent increase in the speed of data collection), the project has come to 
an inflection point where more automated data processing is desirable. 
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Using SPSS to Create a Transparent Modular 
Workflow 

The pre-existing MIDUS data cleaning procedure has principally involved a semi-manual 
process that involves using SPSS syntax to identify anomalous cases. These anomalies are either 
logged for later cleaning or addressed immediately. The SPSS data workflow provides two 
major “modes” of interacting with data: 

• A point-and-click mode in which data manipulation options are selected from a series of  
menus. 

• A code-like mode in which a proprietary SPSS language (syntax) is used to manipulate 
the data. This syntax is stored in its own file separate from the data file and can import, 
combine, and manipulate multiple datasets. The code is run by selecting the section of  
syntax the user wishes to execute and clicking a Run button. Syntax files are not meant 
to be run all at once like a traditional computer script. Instead, they contain discrete 
actions and queries that are related to a specific workflow. 

Both modes of SPSS data manipulation are capable of executing query-like operations on 
the dataset that produce a non-transforming output dataset. These query results are sent to a 
third file, called the output file. The syntax mode also logs all executed syntax, even non-query 
language, and all error messages in the output file. The point-and-click mode also sends some 
output to this file, but it is not as important to non-query point-and-click operations. MIDUS 
uses the syntax mode of SPSS data manipulation almost exclusively. This means that the 
standard MIDUS SPSS data cleaning workflow involves three SPSS files working in concert 
(Figure 1). 

 
Figure 1. SPSS syntax-based data workflow. 

MIDUS has been using SPSS for data cleaning from a very early point in its existence, and 
the team leverages this three-file system extensively to provide provenance information 
throughout the cleaning process. Relevant query results from the output file can be copied into 
the syntax file and annotated for immediate or eventual cleaning, with curator initials and query 
date required for each annotation. A major step in the final cleaning process involves printing 
key query results from the output file onto paper and annotating cleaning decisions in longhand. 
The annotations are then used to build a final cleaning file consisting mostly of case-specific flags 
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and corrections. The printed and annotated paper documents would be retained until the 
cleaned data was finalized and released, when they would be discarded. 

Standard cleaning syntax, such as setting variables to the project’s missing codes or 
reformatting time variables, can also be easily copied and pasted from syntax used in previous 
waves. This syntax typically needs minor updates to allow for changes to the instruments or new 
conventions in SPSS syntax or data formatting, but the basic structure of the cleaning module 
could typically be kept. To ensure that these cleaning steps were applied logically and 
consistently, a standard cleaning workflow was established as a skeleton SPSS syntax file that 
could be expanded with a combination of new and reused syntax appropriate to each 
assessment (Figure 2). 

 
Figure 2. Excerpt from MIDUS Biomarker cleaning template, with network locations 

redacted. 

Advantages of this workflow include: 

• deep and broad knowledge of  SPSS syntax among MIDUS staff, making the data 
cleaning process highly transparent internally; 

• reusable SPSS syntax from wave to wave of  data cleaning; and 

• the dated and initialed annotations bundled with the syntax for easy reference. 

Disadvantages include: 

• the use of  SPSS syntax, which is not familiar to younger incoming staff;  

• discarding the annotated paper documents after a round of  cleaning (loss of  
provenance); and 

• the highly manual review process, which becomes less practical as the volume and speed 
of  incoming data increases. 

Growing Project Prompts Need for Further 
Automation 

The MIDUS Biomarker project was introduced during the data collection wave in the early 
2000s. This was the second data collection wave for the initial cohort (see Figure 3). A sub-
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sample of the total MIDUS sample was assigned to one of three locations in the US (Los 
Angeles, California; Madison, Wisconsin; or Washington, D.C.) and brought in for a thorough 
clinical assessment. This initial wave of collection already involved extensive metrics, from 
psychological questionnaires to multiple assays performed on blood, urine, and saliva samples. 
The final dataset contains just under 3,000 variables per participant, including administrative 
variables and various data quality flags. 

While this initial data collection wave was extensive, subsequent waves have provided even 
more data. For example, the collection of activity and sleep data using a device called an 
Actiwatch was initially restricted to participants who came to the clinic in Wisconsin. (All 
locations used a self-reported sleep diary.) In the most recent round of data collection, 
completed in 2022, additional funding allowed us to expand Actiwatch data collection to all of 
the data collection sites. Another source of increased data volume has come from the addition of 
new categories of metrics, many of them collected digitally and allowing for very detailed and 
technical datasets. For example, we have now completed two waves of data collection (one for 
each cohort) that include measurements of gait data collected using sensors attached to the 
ankles and lower back. This produces data on a number of gait characteristics that are then 
exported from the sensors’ proprietary software and incorporated into our dataset. 

 
Figure 3. MIDUS data collection timelines. 

The dataset we released earlier this year contained roughly 200 more variables than the 
initial Biomarker dataset. In addition, more participants had valid data for nearly the full 
dataset, rather than only the subset of data available at their assigned data collection location. 
Add a current collection schedule that almost doubles the pace from previous waves of data 
collection, and the pressures on Biomarker data staff are increasing. 

This growth has put data curation for the project at an inflection point. The semi-manual 
process of running discrete SPSS tasks has worked well. However, the combination of more and 
larger digital datasets and a faster data collection schedule has brought things to the point where 
this process is no longer a sane or viable way of processing incoming data. Some degree of more 
hands-off data processing must be introduced. 
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Extending Cleaning Modularity into Python 
Automation 

As the data collection and cleaning process has been reviewed for opportunities to improve 
efficiency, it has been important to consider the strengths of the old process when implementing 
a new workflow. Because SPSS has been so integral to MIDUS data for over 20 years, there is a 
deep and meaningful well of institutional knowledge on the software. Not only has SPSS syntax 
and output been woven into the fabric of the data cleaning process, but our final datasets are 
also always released in SPSS SAV data file format, which allows for more extensive metadata 
than, for example, a CSV file would provide on its own.  
Keeping this in mind, it was important to be strategic when considering how and when to 
eliminate SPSS portions of the workflow. As the previous wave of data collection was wrapping 
up, it was agreed that Python could be introduced in a limited capacity, to batch-apply a 
handful of transformations that needed very little oversight. (For example, file aggregation or 
one-to-one ID swaps.) This has been used to prepare a significant percentage of our less 
complex native digital data for cleaning.  

As our current wave of data collection has been planned and gone into the field, a major 
goal has been to convert more of our initial quality checks to an automated Python system. Our 
final cleaning workflow is too extensive to convert within our current collection timeframe, 
especially at the cost of losing the established workflow, institutional knowledge, and standard 
output file format from past waves of data cleaning. However, much of our incoming data is 
delivered on a monthly or semi-annual basis and goes through a set of initial quality control 
checks before being stored for later cleaning. The results of these checks inform regular feedback 
to field staff to ensure they are collecting data accurately. The checks are also used to populate a 
preliminary list of data issues to address during cleaning. This is the task most strongly impacted 
by the increased speed of data collection. It is also the least complex portion of data cleaning, 
with minimal batch-applied formatting making up the majority of data transformations. 

The challenge, then, was threefold: 

• To convert this step of  the data curation process to automation without losing the 
provenance that had been bound up in the SPSS syntax workflow; 

• To track transformations and anomalies from outside of  SPSS in ways that are still 
transparent to a team whose core competency is SPSS and Excel; 

• To develop a Python Quality Control (QC) system that allows for highly flexible and 
modular code that can be reused in future waves of  data collection. 

Much of the remainder of this section will discuss the specific technical considerations that 
went into adapting this workflow for a specific instrument, using the Li-Ludäscher model for 
identifying and reusing modular workflows. However, it is important to note that the 
considerations listed above also impacted the design and implementation of this case study, 
outside of the Li-Ludäscher model.  

Medical History Interview Quality Control: An Overview 

One of the prime candidates for a more automated quality control system was the lengthy 
Medical History Interview, a staff-administered questionnaire that examines the study 
participant’s medical history, from reproductive health to previous surgeries, alcohol and 
tobacco use, family medical conditions, preventive health practices, and significant deaths in the 
participant’s social circle. The Medical History Interview tends to receive the most extensive 
revisions per wave of data collection, as questions that have already been answered are dropped 
and questions of new physiological and psychological concern are added. It is also typically one 
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of the longest and most complex assessments administered by the Biomarker team, with around 
a thousand variables and many complex skips based on participant responses. 

In previous waves of data collection, the monthly QC for the Medical History was 
conducted manually in SPSS. The variables for each set of skips were retrieved one subject 
block at a time using the syntax query language and then most of the quality control was done 
by visually reviewing the aggregated results, with some very light automation to make sure years 
were not outside of range. Any significant errors (usually blank variables) were then logged in a 
separate Microsoft Excel file for follow-up with field staff and for the data cleaners’ later 
reference. When performed conscientiously, these manual checks could easily take four to six 
hours to complete each month, and the visual review process could be cognitively taxing. When 
considering assessments to review using automation, the Medical History was an obvious 
candidate. 

Automating Medical History QC: Planning 

Li and Ludäscher (2022) have outlined the basic conceptual model (the Li-Ludäscher model) for 
producing reusable workflows in data cleaning. Technically, the quality control for these 
assessments is a pre-cleaning step, but applying this model is still instructive to understanding 
how the project was planned and implemented.  

The first three steps of the Li-Ludäscher model are identifying the data analysis purpose and 
questions applied to the dataset and then using them to define data cleaning objectives (2022, p. 4). 
Since MIDUS datasets are constructed for open-domain public release, these terms are less 
clearly defined for this project. In broad terms, they could be described as follows: 

• Purpose: Creating a complete and usable dataset for researchers. 

• Question (Query): Are the variables completed as fully as they should be, given the skip 
logic activated for each participant? 

• Objective: Evaluate all of  the skips for each study participant, ensuring that they are 
completed correctly and that any anomalies have a documented justification. 

The next step of the Li-Ludäscher model involves using provenance from previous cleaning 
to develop a recipe for achieving the data cleaning objective (2022, p. 4). This is available 
through the SPSS syntax files used to clean the Medical History in the previous wave. 

It is not, in the language of Li and Ludäscher (2022, p.3), safe or meaningful to apply this 
data QC recipe directly to the current wave of data collection, for a number of reasons: 

• This is in SPSS syntax and we wish to convert to Python; 

• The naming convention for these variables is different for the current wave of  data 
collection; 

• Many of  the Medical History variables have been moved, deleted, added, or 
reformatted since the previous wave of  data collection. 
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Figure 4. SPSS Medical History QC syntax from previous data collection wave. 

The previous wave’s data QC recipe is clearly not reusable as-is for the current project. It is, 
however, possible to adapt and decompose (Li & Ludäscher 2022, p. 4) this existing recipe into a 
highly extensible and usable Python framework. 

One particularly prominent feature of the original data QC recipe is the organization of the 
data into blocks of variables by topic, with the skips reviewed block-by-block. While there is no 
particular operational need to do this from a technical perspective, skip errors typically need to 
be resolved via review and communication with field staff by the data curation team, and having 
the variables organized by topic makes this process more convenient. This structure also 
provides a convenient bridge to Python programming: Declaring a Medical History Section 
class object is a digestible and logical way of approaching data review from a programmatic 
viewpoint as well. Using objects, or an Object-Oriented Programming approach, in Python 
overall meshes particularly well with the Li- Ludäscher model, as the reusable parts, or modules, 
that they advocate identifying in existing data cleaning recipes translate very well to the 
abstracted versions of operations used in Python models. In fact, an abstracted or module-based 
approach is particularly appropriate for the Medical History, as it is the most extensively revised 
assessment for each wave of data collection. The specific content of Medical History sections will 
change from wave to wave, but the abstracted concept of a Medical History Section will not. All 
Medical History sections of any wave will have variables, skips, and stems. 

A second key feature of the existing Medical History recipe is the Excel file where skip errors 
and corrections were logged. In the SPSS workflow, these files were created, populated, and 
updated by hand, based on the SPSS syntax results in the SPSS output file. Since in a Python 
system, the program would be flagging skip errors for curator review, it made sense for Python 
to create and populate this spreadsheet, while data curators would review and update its 
content. It was important that any errors detected by the QC system be output in a stable 
format that was accessible to both the system developer and to staff with SPSS specialization, 
since both could be referencing it at different points in the data cleaning process. The developer 
chose to use CSV for these files, as they could be reviewed and edited using Excel but did not 
require extra Python packages to be installed, as would be the case for an XLSX file. 

There were two additional factors not accounted for by the old recipe that needed to be 
taken into consideration while planning the new quality control system. First, the method of 
data collection for this assessment was changed, from using an SPSS Interviewer file to using the 
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secure online health data portal REDCap. The reasons behind this change are too extensive to 
recount here, but one practical effect is that REDCap allows for more granular validation of 
data entry fields. This eliminated the need to check data formats as stringently in the new QC 
system. Second, for this wave of data collection, the Medical History was undergoing continued 
revision right up until almost the moment that data collection started. Because it is difficult to 
renumber variables within REDCap, this meant that the internal numbering of the variables for 
the assessment became non-sequential. It is standard practice for our public datasets to be 
released with the variables within each assessment organized sequentially, so the entire 
assessment would need to be re-numbered from top to bottom as part of the monthly formatting 
process. 

Because of this renumbering, it was important that any formatted data file output by the 
QC system be in SPSS-ingestible format, since final data cleaning would still take place in SPSS. 
Again, CSV was selected for this output, because it is SPSS-ingestible and because native 
creation of SPSS data (SAV) files in Python requires the installation of even more precarious 
packages than Excel formats. A downside of this system is that the standard metadata associated 
with the Medical History dataset will have to be applied via SPSS syntax post-file creation 
rather than during the Python formatting process. However, this was already a feature of the 
SPSS data QC recipe, due to the constraints of the previous data collection software. 
Fortunately, dataset metadata creation is a task that SPSS syntax handles well. 

Automating Medical History QC: Python Implementation 

This paper is not intended to be an in-depth code review of the Medical History QC system as it 
was ultimately implemented. However, a discussion of a few key features of the Python objects 
defined for the system can be useful to other practitioners, as they are suggestive of the overall 
approach. 

There were two basic types of generic model defined for the Python QC system: 1) Generic 
skip definitions based on Named Tuples, and 2) a generic Medical History Section. The Medical 
History Section child classes were then used to break out the Medical History Interview content 
into blocks based on topic and size of skips. (For example, the Reproductive Health section was 
defined in smaller chunks depending on whether the respondent had been assigned male or 
female at birth, whether people with uteruses were still menstruating or had ever been pregnant, 
etc.) These divisions were somewhat arbitrary but were instituted mostly so that identifying and 
trouble-shooting data issues would be more manageable and intuitive for data staff, and so that 
skip logic would not need to be overly complex in order to describe the data. 

Defining skips 
Skips, in the context of this dataset, typically have three basic components: 

• A stem question that must be answered in order to determine if  the skip is triggered or 
not; 

• A trigger condition for that question, that must exist in order for the skip to be activated 
(for example, selecting “Yes” for a yes/no variable, or entering a number greater than 
zero for a numeric variable); and 

• A list of  variables that should only be displayed if  the stem question receives the right 
input. 

These key components were given a standard vocabulary that was used in nearly every skip 
type that was defined in this system. (More on the exception shortly.) Every skip was written to 
expect a stem variable, a “switch” (the trigger condition), and a “branch” (the variables that are 
revealed or hidden by the skip). A “flag” was also included in each skip to help make the type of 
trigger condition more accessible when the skips are evaluated. The skips themselves were also 
referred to as branches, to maintain linguistic continuity with REDCap, which refers to skips as 
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“branching logic”. Because REDCap defines skips by which trigger conditions reveal variables 
rather than hide them, the skip definitions in Python followed the same approach. 

 
Figure 5. Generic skip logic. 

While most skips followed the format given above, two additional types of skips were defined 
that allowed for nested skips. Any type skips have the same format as the one given above but are 
evaluated with the expectation that they will contain a list of sub-skip definitions rather than a 
list of variables. This skip type is used to define instances where, once the skip is activated, at 
least one of the sub-branches should be filled out. (For example, if the participant indicated they 
had food allergies, at least one and up to three sets of variables providing details on those 
allergies should be valid.) Any skips also include a “charge” (which can be positive [“pos”] or 
negative [“neg”]) that is used to indicate if the sub-skips should be evaluated when the trigger 
condition is present or when it is absent.  

Or type skips are the one kind of skip with a different structure: They assume that either of 
two individual skip tuples could be correct. This allows for both skips where different responses 
to the same stem can reveal different variables and skips where two different stems can reveal 
overlapping variables depending on the value given. The two tuples are listed as “condition1” 
and “condition2”, with the stem and flag hard-coded to “or”. Finding a way to better 
standardize this skip type is tech debt reserved for future development of this tool. 

Defining sections 
The skip definitions discussed in the previous section are, in turn, used in combination with 

the Medical History Section child classes to define the patterns for completing sections as a 
whole. 

The basic structure of the Medical History Section was defined as a class (Figure 6) and 
children of that class were used to define the Medical History content section by section (Figure 
7). The question matrix was used to store the crosswalk from the REDCap variable numbering 
scheme to a sequential one. Tuples were used to define section-level skips (where the entire 
section was or was not populated based on a stem question) as well as skips within the section 
(for example, checking to see if year variables were populated for corresponding events such as 
surgeries). Marginal fields in MIDUS datasets are used for field staff to record unusual 
circumstances surrounding nonstandard or edge case answers. Some sections that frequently 
inspire caveats have their own marginal notes field, while many others do not. 
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Figure 6. Generic Medical History Section definition. 

Properly populating the section-specific mappings was by far the most time-consuming and 
challenging part of the model definitions, and the skip logic in particular required extensive 
testing and comparison with the REDCap skip logic. However, now that the generic Medical 
History Section class has been defined and implemented, those mappings are the only part of 
the QC system that should need to be re-written with each wave of data collection. All of the 
remaining code relies on the basic structure and methods defined on the parent class. 

 
Figure 7. Using Named Tuple skip logic classes to populate Medical History Section classes. 

Extending skips and sections 
While the current Python QC definitions are focused on the demands of the Medical 

History, the recipe established by the Python code is highly transferrable. Named Tuple skips 
are easily directly ported to evaluate the skips of a different assessment with no alteration. The 
Medical History Section class can be easily split into an even more abstracted Assessment 
Section class, with the question matrix and renumbering methods remaining on the Medical 
History class and the other attributes and methods moved up to the Assessment Section. This 
would allow the Assessment Section to be assigned child classes from any other assessment that 
needs skip review. 
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Conclusions 

FAIR (findable, accessible, interoperable, and reusable) data principles are rightly spoken of in 
the context of promoting communication between researchers. And modular data cleaning 
workflows do promote the interoperability and reusability of data. For example, the consistency 
of MIDUS cleaning protocols across waves allows us to provide consistently applied data quality 
flags and data cleaning operations across our datasets: An asset to researchers seeking to use, 
reuse and recombine our data. However, it is important to remember that FAIR and 
transparent data practices are just as important to internal communication as they are to 
external communication. Promoting clear and accessible communication within a team is a first 
step to providing clear documentation to external researchers. 

As Boeckhout et al. (2018) have pointed out, machine-actionability is a key aspect of FAIR 
data principles (pp. 932-933). This is true in the sense of creating datasets that are machine-
ingestible for user analysis. But it also interlocks with the Li-Ludäscher modular data review 
module: A machine-actionable cleaning module is a module uniquely suited to reuse, and not 
just to reuse, but to clear, consistent, describable reuse. This allows for better internal 
documentation and refinement of data cleaning practices, completely aside from the benefit to 
outside researchers. It is important to implement FAIR practices for the benefit of the wider 
data community, but in this case, FAIR data management benefits the research team itself as 
well. In this case study, the clear documentation of the existing SPSS data QC recipe allowed 
the Python QC system to be designed more easily. Applying interoperability to the design of the 
Python recipe will allow it to be extended for future QC tasks within the project. 

However, when implementing the Li-Ludäscher model, it is important to keep in mind 
other aspects of FAIR beyond the conceptual and technical concepts the model employs. 
Accessibility to research staff is the first step towards accessibility for the wider data community. 
Ruediger et al. (2022) have noted that metadata and ontologies are a “social infrastructure”, 
“embody[ing] community norms and shared… frameworks of understanding” (p. 15). While 
this is true of metadata, it is also important to note that data cleaning workflows are also a social 
infrastructure, particularly in the context of a longitudinal project such as MIDUS. Not only is it 
important to be aware of the baseline assumptions that underpin cleaning choices in long-
running or community standard cleaning workflows, but even the act of engaging in data 
cleaning itself assumes certain levels of technical skill and data understanding on the part of the 
project curators. Perfectly translating a cleaning module into a format too opaque to be used or 
parsed by existing cleaning staff would not be a truly successful module reuse, even if in terms of 
data modification or evaluation it functioned in precisely the same way.  

As more data communities become established and mature (Ruediger et al., 2022), it will 
become increasingly important to consider any changes in data management technology not 
only in the context of what is new and future-oriented, but also in terms of the existing data and 
domain expertise contained within the community as a whole and within the research teams 
that comprise it. This does not have to mean that data management cannot be fully or partially 
updated as appropriate, but it does suggest supplemental concerns to add to Li and Ludäscher’s 
modular cleaning reuse approach. In particular, this curator suggests adding the following 
questions to reuse considerations, particularly when the technology used to implement the 
cleaning recipe will be changed or upgraded: 

• Which research staff  (who) implements this recipe? Is it employed by field staff, by data 
cleaning staff, by lab staff, by the researchers themselves? 

• Does that staff  person or team have the capacity to update this workflow in the way being 
considered? Capacity can refer to technical ability, hours available to devote to the 
project, cleaning technologies they are familiar with, available hardware and software, 
and any other broader factors that may complicate the technical implementation of  the 
update or reuse as conceived. 
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• Who will use this data next? What is the data pipeline for this data? Will the next person to 
use this data after the cleaning step under review have specific data format or software 
compatibility needs that are not strictly required by this cleaning process? Do 
modifications need to be made to the current or projected recipe in order to help the 
data flow to its next user more smoothly? In some cases, it may be useful to review the 
entire pipeline in order to ensure, for example, that a specific variable that is not useful 
for intermediate cleaning steps is still available in the final shared dataset. But even in 
cases where mapping the entire pipeline is not necessary, understanding the needs of  the 
next step in the chain is a useful exercise, especially on teams with multiple individuals 
cleaning or analysing the same data. This could be seen as an aspect of  the cleaning 
objectives from the Li-Ludäscher model, but it is worth highlighting as a sometimes less-
intuitive consideration. 

The ultimate goal of FAIR data principles should be an open science environment, where 
data can be shared freely and meaningfully within, at minimum, the community of practice 
where it was created. However, it is worth investigating the benefits these principles can offer 
within a research team, before the data has a chance to be shared elsewhere. This paper 
provides one example; the author looks forward to seeing others from the broader data curation 
community. 
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