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Abstract 
Missing and conflicting data values create problems when integrating datasets from multiple 
collections. Moreover, when the collections to be integrated are large and continuously 
updated, it is not feasible to manually resolve these problems. Instead, disagreements and 
gaps should be resolved in an automated fashion. To achieve good quality integrated datasets 
automatically we introduce the Curation-informed Weight Distribution Network (CiWDN), 
a method that suggests which collection is more reliable in providing a data value in question. 
CiWDN adapts the PageRank algorithm (PR) to assign and distribute weights across data 
fields present in the different collections. Weight assignment is rooted in data curation best 
practices as metrics of a collection's reliability. The metrics include: a) data completeness, b) 
data coincidence, and c) data consistency over time. Final weights used as collection ranks 
provide the basis to resolve conflicts between different collections contributing a data value 
for a given field. CiWDN relies on a data dictionary that normalizes fields across collections, 
and is implemented on a graph database. We demonstrate CiWDN’s capability using the 
case of ASTRIAGraph, a knowledge system built to increase transparency of activities in 
Earth’s orbital environment. CiWDN can assess the reliability of data collections that conflict 
on space object characteristic data fields, which can be used to resolve the differences. This 
method for computing collections' reliability can be ported to curate other types of large 
integrated datasets for use in machine learning and other data-driven applications. 
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 Introduction 

Data curation entails activities towards maintaining, preserving, and assuring the quality of 
research data throughout the continuum of its generation and reuse (Pouchard, 2015). It is often 
characterized as labor-intensive and skill specific (Borgman & Bourne, 2022), frequently 
requiring ad-hoc solutions for each dataset (Thirumuruganathan et al., 2020). Such is the case 
for domain specific datasets that integrate data from multiple collections, each of which may 
provide different, overlapping, or missing values for the same data field. Problems are 
compounded when contributing collections are very large, grow over time, and data values are 
constantly updated, in which case detecting and resolving conflicts manually becomes untenable. 
We introduce Curation-informed Weight Distribution Network (CiWDN), a novel method to 
automatically provide a recommendation as to which collection provides the best value for a 
data field with conflicting values. 

An important concept in this work is reliability, which we define as the confidence that can 
be placed on the data provided by a given collection. Reliability is akin to "trustworthy," "with 
integrity," or "reproducible," all terms used to express data curation goals. Translated as 
different aspects of a data collection’s quality, reliability is assessed using established data 
curation best practices (Sawchuk, Gillis, & Macleod, 2023). In this work collections’ reliability is 
automatically assessed through three metrics: a) completeness, b) coincidence, and c) 
consistency. These metrics are applied as weights in the form of punishment or rewards to come 
up with a collection's reliability score.  

Implemented in a graph database, CiWDN uses the PageRank algorithm (Page, 2006) as a 
mechanism to assess data fields and corresponding values within and across collections, 
distribute weights according to the established metrics, and rank the reliability of the collections 
being compared. The methodology relies on previous work done by this team designing a 
unifying data model and corresponding data dictionary so that fields across collections are 
interoperable (Esteva et al., 2022). Based on the model, field data labels from different 
collections are normalized during ingestion to the graph database. 

We test CiWDN using ASTRIAGraph1, a knowledge system that is used to answer 
questions about space sustainability. This system has complex curation challenges in that it has 
aggregated data about satellites and other man-made space objects (here referred to as SOs) 
from different collections since 2018. These collections contribute a variety of fields, and each is 
updated at a different pace over time. CiWDN helps determine the most reliable collection to 
provide the value of each field, which offers a solution for SOs resolution when there is no 
agreement between collections. 

Related Work 

Applications required to conduct data curation tasks automatically or semi-automatically are 
increasingly being developed (Thirumuruganathan et al., 2020). In their survey of 667 data 
quality tools, Ehrlinger and Wöß (2022) found the pool to be diverse in terms of scope and 
functions, but most tools lacked rule-based metrics and data quality metrics reporting. In their 
framework for digital curation Yoon et al. propose that curation assurance, understood as trust 
in the data, is an area in need of development (Yoon et al., 2022). The method proposed here 
fills the gaps identified by these two papers. Curation is automated by operationalizing best 
practices against which the reliability of data collections is measured.  

Ehrlinger and Wöß (2022) also found that 50% of the tools surveyed are domain specific. 
Many such tools require semantic models and data mappings to adjust to the requirements of 

 
1 ASTRIAGraph: http://astria.tacc.utexas.edu/AstriaGraph/ 

http://astria.tacc.utexas.edu/AstriaGraph/
http://astria.tacc.utexas.edu/AstriaGraph/
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domain specific datasets (Malik, et al., 2020; Satti, et al., 2020). Our methodology is both 
domain specific and generalizable. As long as a data dictionary is in place to address specific 
data integration needs, the curation metrics and weight distribution methodology can be ported 
to data in any domain. 

A recurrent theme in domain specific data curation is the required level of human effort. 
IQBot was designed to share the specialized work done by curators in protein databases that 
cannot afford them (Alqasab et al., 2017). The algorithm detects errors between current and 
previous versions of data in databases that use extensive human curation expertise. The 
detection results are then ported to other protein databases for purposes of comparison and 
error detection. The authors suggest that the code can be applied to other than protein datasets. 
While our method compares with other collections to suggest the best values to resolve a given 
conflict, suggestions are not based on the expertise of a curator but on the degree of reliability of 
the collections that is computed automatically by CiWDN.  

Entity resolution and collection reliability are the core of this work. Data Tamer uses 
artificial intelligence to merge collections with different formats and field names (Stonebraker et 
al., 2013). With the goal of reducing the number of resolution cases by orders of magnitude, it 
detects when entries reference the same object, and it leaves cases with too much ambiguity for 
resolution by human input. SLiMFast, which focuses on research articles, approaches data 
resolution as a statistical learning problem (Rekatsinas et al., 2017). The method quantifies the 
reliability of each article by comparing its results to the rest of the data in the database, 
considering the likelihood that the article is correct based on other entries. The system also 
allows users to label particular entries as “truth.” The tool described by Fourches, Muratov, and 
Tropsha (2016) curates chemical data and bioprofiles to flag errors in chemogenomics research. 
Focused on data quality, the tool provides a measurement for research results that can be 
verified or refuted through repeated experiments. Our project differs from these systems in that 
entity resolution is based on curation metrics and is implemented through an algorithm that 
ranks collections reliability based on their contents, without human feedback or experiment 
validation. 

The CiWDN Method 

CiWDN is built on an adaptation of PageRank (PR). PR is an algorithm designed to rank 
related entries in linked databases. Each entry is assigned a weight, interpreted as importance, 
and the algorithm distributes weight iteratively from an entry to all others that it references until 
each entry’s weight numerically converges. The end result is a list of weights that ranks the 
entries in the database. Notably, Google used PR to rank the importance of websites related to a 
search query. Each site is an entry in Google’s World Wide Web database. A hyperlink from 
one page to another constitutes a link between those related sites. More accrued weight is 
interpreted as greater importance, which determines the order of search results. 

Instead of entries, in CiWDN we adapted PR in a graph database to rank data collections 
where there is no guarantee that data field values agree between them. In this approach, the 
database is cast as a graph, where fields are nodes, and the relationships between nodes are 
directed links between them. The PR based method to assign weights to the nodes is informed 
by curation metrics of completeness, coincidence, and consistency. 

To illustrate the application's capabilities, in Table 1 we show the characteristics and scope 
of the 7 collections that provide data to ASTRIAGraph. The names of the collections have been 
anonymized through an ID, each row showing the number of SOs and corresponding fields that 
they report on as well as the frequency with which the data is updated. Note that not all field 
values change at every update. 
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Table 1. Scope of Collections Providing Data About SOs to ASTRIAGraph 

Collection ID Number of SOs Number of 
Fields 

Collection Update 
Frequency 

0 23983 20 daily 

1 352 18 daily 

3 7081 16 daily 

4 210 18 daily 

7 4542 15 semi-monthly 

13 669 13 single import 

15 733 17 single import 

 
Data provided by heterogeneous collections can be categorized as static and dynamic. Static 

fields contain the same values throughout different data updates, while dynamic fields contain 
values that change during updates over time. Also, some fields may contain values with literal 
meaning, such as a name in a string format. Others may be domain-specific formats with 
information encoded through scientific algorithms. Dynamic fields, especially for 
ASTRIAGraph, vary numerically, and the meaning in the variations is dependent on the 
context of each field. Thus, assessment requires computing similarity between values using 
domain-specific algorithms. To demonstrate the generalizability of the method, this work 
focuses on static fields. 

Adaptation of the PR algorithm in the ASTRIAGraph database is as follows. First, 
collections ingested to the database go through normalization of field labels. This allows the 
weight assignment process to go through the graph database nodes within and across collections 
(Esteva et al., 2020). A PR node is defined as a collection’s field, linked to other related fields, 
and encompassing the field’s current and historical data values. The weights of nodes are set 
according to curation metrics that will indicate the quality of that node’s data. Figure 1 depicts 
how weights are distributed across nodes. 

 

Figure 1. Arrows of different sizes indicate the scale at which weight is distributed from the 
source node to other nodes in the collection (blue) or to a different collection (yellow). 
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Each node will have links pointing to other nodes. Each pair of nodes in the same collection 
will have links between them. A link will point outside its collection if there is a similar node in 
another collection. The distributed weight is split across these links and given to the destination 
nodes, but the partitioning of weight to links is not necessarily equal between the links. Each link 
is assigned an attribute to determine how much weight is passed from its origin node during 
weight distribution. We call this attribute a “scaling factor." The three curation metrics – 
completeness, coincidence, and consistency – determine the initial weights of the nodes and the 
scaling factors of links across collections. These three metrics represent patterns of gaps, 
changes, conflicts, and commonalities in data values within and across collections. 

Represented in Figure 2, completeness evaluates the presence of gaps within the most recent 
data in a collection’s node. Gaps can be blank values or strings denoting an unknown value such 
as “TBD.” 

 

Figure 2. Red blocks represent gaps in collection A. 

Coincidence compares data values between two similar nodes in different collections. We 
compute the percentage of values in one node’s present in the other node’s data (see Figure 3). 

 

Figure 3. Green blocks represent common data values between nodes in collections B and C. 
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The coincidence result is used to scale the weight distributed between node B and node C. 
Larger coincidence increases the amount of weight to be distributed. 

Consistency considers the historical data corresponding to each node. By historical data, we 
refer to data that aggregates over time through updates noted in Table 1. We chose to sample 
each node over the span of a year on intervals of every tenth day. Between concurrent samples, 
we look for changes, whether new gaps or altered values, as shown in Figure 4. As such, this 
metric combines completeness and coincidence within the historical data of a single node. 

 

Figure 4. Different colors indicate values changing in a node in collection D over time. 

Completeness and consistency metrics, which evaluate each node in isolation, are used to 
initialize all weights in the graph’s nodes. After this, the PR-based weight assignment loop begins 
and each node is evaluated sequentially. Figure 5 shows how this works in three steps: 1) the 
node’s weight is updated, 2) the weight is compared, and 3) the weight is distributed. 

 

Figure 5. Red indicates the update step into blue. The previous and updated blue weights are 
compared. Weight is distributed to yellow. 

To update a node’s weight in step 1, all the weights on links pointing towards the node are 
summed. Step 2 compares the updated weight to the previous one on the same node. The 
distribution in step 3, divides the node’s weight onto links that point away from the node. The 
portion of weight distributed to each link depends on the collection the link points to. If it is a 
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different collection, then coincidence between the nodes determines the amount of weight. The 
process moves on to the next node in the sequence until there are no more iterations and the 
weights of all nodes converge. Final weights are the nodes' reliability scores, providing a basis for 
evaluating the quality of the collection field-by-field. 

Demonstrating Collections Reliability  

We illustrate how CiWDN delivers results through use cases involving the resolution of the static 
fields: Country (which refers to the country of origin of a SO) between collections 0, 1, and 7; 
and NORAD ID (an identifier system run by USSPACECOM and used worldwide) between 
collections 0, 1, 3, and 4. 

First, we consider the resolution of the field Country. As shown in Table 2, while collection 
0 contains a small percentage of gaps, and collections 0 and 7 contain a small number of 
changes across their historical data, the three can be considered complete and consistent. 

Table 2. Country Completeness & Consistency of Collections 0, 1, 7. 

Node Name Completeness Consistency 

0_Country 0.989 0.999 

1_Country 1.0 1.0 

7_Country 1.0 0.991 

 
The coincidence metric affects this case the most. Results shown in Table 3 indicate that 

collection 0 contains almost all of the Country values present in 1 and 7, while collection 1 
contains almost no values from the other two. The coincidence scores distribute large portions of 
weight from 1_Country and 7_Country into 0_Country. 

The metrics combined with the graph’s node structure determine how weight is assigned 
and distributed. The results of the process are drawn in Figure 6, with the final reliability scores 
at the endpoints on the graph. This gives us a reliability ranking of these collections for field 
Country. Collection 0 is found to be the most reliable to resolve the Country field conflict. All 
three collections are rewarded roughly the same for their high completeness and consistency. 
The coincidence results reward collection 0 the most for containing many Country values from 
the other two collections. Collection 1 is the most punished by its low coincidence with the other 
collections, leaving Collection 7 with a moderate reliability score. 

Table 3. Country Coincidence Between Collections 0, 1, and 7. 

Compared Nodes/Fields Coincidence 

0_Country with 1_Country 9.901×10-3 

0_Country with 7_Country 9.901×10-3 

1_Country with 0_Country 1.0 
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Compared Nodes/Fields Coincidence 

1_Country with 7_Country 0.0 

7_Country with 0_Country 1.389×10-2 

7_Country with 1_Country 0.0 

 
The second case focuses on resolving NORAD ID between four collections. It illustrates 

how CiWDN can inform complex domain-specific decisions. Occasionally SOs orbit predictions 
from different collections will coincide, but the corresponding SOs identifiers may not match. 
This introduces ambiguity of whether different collections are reporting on the same or on two 
distinct SOs.  

 

Figure 6. Country Reliability Scores for Collections 0, 1, and 7, demonstrating convergence 
over the weight assignment process. 

Table 4 shows that the four collections are fairly complete and consistent for the NORAD 
ID field. Only collection 3 contains gaps, and the consistency scores indicate that few changes 
occur over time. 

Table 4. NORAD ID Completeness & Consistency of Collections 0, 1, 3, 4. 

Node Name Completeness Consistency 

0_NoradId 1.0 0.996 

1_NoradId 1.0 0.998 

3_NoradId 0.999 0.943 

4_NoradId 1.0 0.984 

 
Again, coincidence affects the final reliability scores strongly. As shown in Table 5, 

coincidence in collection 0 is the highest across the board. Collections 1, 3, and 4 only contain a 
few common NORAD ID values. The coincidence scores distribute large portions of weight 
from these collections to collection 0, and very little weight from collection 0 to the others. 
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Table 5. NORAD ID Coincidence Between Collections 0, 1, 3, 4. 

Compared Nodes/Fields Coincidence 

0_NoradId with 1_NoradId 1.468×10-2 

0_NoradId with 3_NoradId 2.264×10-2 

0_NoradId with 4_NoradId 8.339×10-5 

1_NoradId with 0_NoradId 1.0 

1_NoradId with 3_NoradId 0.0 

1_NoradId with 4_NoradId 0.0 

3_NoradId with 0_NoradId 0.727 

3_NoradId with 1_NoradId 0.0 

3_NoradId with 4_NoradId 0.0 

4_NoradId with 0_NoradId 9.524×10-3 

4_NoradId with 1_NoradId 0.0 

4_NoradId with 3_NoradId 0.0 

 
Using the reliability computed for the NORAD ID field, we would put more trust in the 

identifiers of collection 0, followed by collection 3, as shown in Table 6. In fact, the reliability for 
collection 0 is so high, that we would take its value, if available, even if there is agreement on a 
different value in other collections. The collections’ reliability scores can help decide whether the 
identifier mismatch is due to an error, or to two SOs orbits nearing each other. These types of 
insights can be used to augment satellite tracking work. 

Table 6. NORAD ID Final Reliability Scores. 

Node Name Reliability 

0_NoradId 4.509 

1_NoradId 0.258 

3_NoradId 0.998 

4_NoradId 0.581 

  
We asked domain experts in the ASTRIAGraph team, who have purview on the sources of 

the data collections involved in the study, to qualitatively evaluate these results. They agreed 
with the results obtained, and indicated that collection 0 is a renowned, established collection, 
generated and used by a trustworthy and diligent organization with capable equipment. 
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Conclusion 

We developed CiWDN to identify the reliability of collections providing data to a unified 
knowledge system. CiWDN informs choices between collections when field values do not match. 
Using ASTRIAGraph, we showed that the method can help identify the most reliable collection 
to resolve conflicting values. Based on an adaptation of the PR algorithm informed by three 
curation metrics, the method is particularly useful to resolve static data conflicts. Importantly, 
providing that a data model and dictionary are in place, CiWDN can be applied to resolve 
conflicts in data collections of diverse domains. 

The main contribution of this methodology is that it addresses the reality of large-scale, 
multivariate, multi-collections data curation automatically, and establishes a valid path towards 
achieving transparency and improving the quality of data-driven science. The need for 
automated assessment of collection reliability is only increasing, as data aggregation and 
unification/merging of data collections are becoming commonplace in the face of AI. This work 
offers a solution based solely on the structure and contents of the data collections. While 
independent of human input, the results of the CiWDN can be considered by experts as a highly 
reliable recommendation for resolving conflicts. 

To augment this system in future work, we will implement domain-specific algorithms to 
analyze dynamic values that are not trivially compared. Additionally, there are other edge cases. 
While this work considers each field within a collection individually, some fields come in sets, or 
can be partially derived from another field. We posit that CiWDN could be expanded to handle 
these cases. More complicated field relationships could be modelled with intermediate nodes 
added to the graph, accounting for the information embedded in the data. As identified by 
Ehrlinger and Wöß (2022), other metrics that measure data quality may be useful in knowledge 
system assessments. For example, using natural language processing to identify if words are 
misspelled or if two values are written differently but may have the same meaning. Since the 
methodology implements each curation metric independently, additional metrics could be 
added to expand CiWDN without disturbing this initial design. This makes CiWDN further 
generalizable to other knowledge systems. 
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