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Abstract 

 
While small labs produce much of the fundamental experimental research in Material 
Science and Engineering (MSE), little is known about their data management and sharing 
practices and the extent to which they promote trust in and transparency of the published 
research. In this research, a case study is conducted on a leading MSE research lab to 
characterize the limits of current data management and sharing practices concerning 
reproducibility and attribution. The workflows are systematically reconstructed, 
underpinning four research projects by combining interviews, document review, and digital 
forensics. Then, information graph analysis and computer-assisted retrospective auditing 
are applied to identify where critical research information is unavailable or at risk.  

Data management and sharing practices in this leading lab protect against computer and 
disk failure; however, they are insufficient to ensure reproducibility or correct attribution of 
work,  especially when a group member withdraws before the project 
completion.   Therefore, recommendations for adjustments in MSE data management and 
sharing practices are proposed to promote trustworthiness and transparency by adding 
lightweight automated file-level auditing and automated data transfer processes.
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 Introduction 

Background 

Increasing Attention to Reproducibility, Openness, and Attribution in Science 
 
Reproducibility is a foundation of science. However, over the last two and half decades, mounting 
evidence has called into question the reproducibility of findings in a continually expanding set of fields, 
leading to regular calls to assess reproducibility and improve scientific practice systematically (National 
Academies of Science Engineering and Medicine, 2019).  

More recently, there have been high-profile calls and initiatives by research societies, funders, and 
publishers to make scientific practice and data more open and transparent (National Academies of 
Sciences, Engineering, and Medicine, 2018) and to develop systematic attribution standards (McNutt 
et al., 2018) and practices for contributors to scientific publications and outputs.Science stakeholders 
increasingly realize that a scientific discipline’s reproducibility needs to be empirically evaluated, not 
simply assumed. A hallmark study by the National Academies of Science Engineering and Medicine 
(NASEM)  (2019)reviewing the state of knowledge on scientific transparency finds that the evidence 
base of non-replicability across all science and engineering research is incomplete.  

Scientific replication practices are neither sufficiently consistent nor sufficient to make confident 
statements about the replicability rate in most fields. However, the major empirical studies on 
replication failure conducted in the natural, clinical, and social sciences have yielded failure rates from 
somewhat lower than 20% to higher than 80%. Further, this study found an uneven awareness of 
issues related to replicability practices and awareness across fields and within science and engineering. 

Similarly, although many fields have widespread norms or even stated policies on research 
transparency (e.g., making data available after publication) and appropriate attribution of contributors, 
these policies are unreliable predictors of practice (for example, Savage & Vickers, 2009). Empirical 
evaluation is needed to understand how and where these practices are followed and what effects they 
yield. 

Studies of Practices in Experimental Materials Science and Engineering 
Schechtman’s Nobel-winning discovery of quasi-crystals stands as a particular occurrence (and 
eventual resolution) of the classic “file drawer” problem (Timmer, 2011) that is highlighted by open 
science advocates; however, this is one illustration with a happy ending and cannot establish a pattern. 
Few published studies describe or evaluate practices related to replication, transparency, and 
attribution in Materials Science and Engineering (MSE). 

A more recent study suggests a rosier picture; an analysis of retractions in MSE publications finds a 
relatively low rate (0.03%) (Coudert, 2019). However, while a high retraction rate signals problems, 
most non-replicable research is generally not retracted; therefore, a low retraction rate does not 
strongly suggest replicability. Another recent study examining data-sharing practices in small MSE labs 
(Wilson et al., 2019) revealed that while many researchers in materials science embrace the idea of 
open science, reproducible research, and data-sharing, they are frustrated with the inadequate 
infrastructure, tools, and practice guidelines. This finding suggests the potential for gaps between 
aspiration (for reproducibility and openness) and practice. Perhaps most concerning; however, is a 
recent set of case studies (Han et al., 2019) published in the Annual Review of Chemical and 
Molecular Engineering that found a high (20%) rate of reproducibility failure in the two research 
areas, the properties of metal–organic frameworks (MOFs) and the synthesis of crystalline nanoporous 
materials, were targeted for study. A 2017 study on isotherm measurements in MOFs also revealed a 
similar level of irreproducible rate (Park et al., 2017). 

Experimental materials science typically does not generate large quantities of data in coordinated 
or collective studies compared with geology, genomics, and some disciplines within economics. In 
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MSE, experimentalists generate materials property data in their “small labs” individually and have not 
developed a shared practice of data-sharing as in many other “big data” disciplines. Moreover, gaps in 
experimental data availability have been identified as a barrier to computational materials science 
since the early 1980s (Westbrook & Rumble, 1983) and remain a significant obstacle to progress. 

Rapid progress in data science and the ever-increasing number of demonstrated applications of 
data science approaches in data-rich fields produce optimism that data science could be productively 
applied to materials science (Tinkle, et al., 2013). Significant progress in this direction requires 
significant data resources. Pioneering studies highlight the difficulty in assembling large quantities of 
experimental materials science data that can be the basis for valuable and insightful inferences 
(Raccuglia et al., 2016). 

The renewed promise of machine learning and its applications in materials science has made the 
need for Findable Accessible Interoperable & Reusable (FAIR) experimental data more urgent 
(Blaiszik et al., 2016) -- especially with the acceleration of machine learning methods in the second 
decade of the new millenium. Further, applying machine learning and artificial intelligence (AI) to 
materials science at scale has been identified as a significant challenge for the discipline. It depends on 
robust tools and practices for data-sharing and replicable workflows (Stein & Gregoire, 2019). In 2022, 
the National Science Foundation (NSF) Division of Materials Research underscored the importance of 
transparent access to data by issuing specific policy guidance for the field (National Science 
Foundation, 2022). 

Data resources can grow through open science practices, such as sharing data generated across the 
research life cycle. However, experimental materials science lacks the norms, standards, and tools to 
make this widespread, especially in academic labs. There have been notable efforts to develop 
infrastructure, standards, and tools to enable experimental reproducible workflow management and 
data-sharing in materials science (Hill et al., 2018; Himanen et al., 2019). For example, the 4Ceed 
Project (Nguyen et al., 2017) developed a cloud framework and associated curation services for the 
real-time capture of materials data from instruments based on a survey they carried out among 
experimentalists (4Ceed Design Team, 2016). The Materials Data Facility (MDF) service launched in 
2016 (Blaiszik et al., 2016) was designed to provide an interconnection point for data-sharing, 
discovery, access, and analysis. The MDF, sponsored by the National Institute of Standards (NIST) 
and the Center for Hierarchical Materials Design (CHIMaD), now hosts about 578 data sets (116 
experimental data sets) and indexes over 970,000 records on materials data from other repositories as 
of December 2021. Other recent efforts include infrastructure for a federated registry of information 
resources for materials science (Plante et al., 2021), a proposed controlled vocabulary and metadata 
schema for materials discovery (Medina-Smith et al., 2021), and a new experimental infrastructure 
under development for the integration of Electronic Lab Notebooks (ELNs) and data archiving systems 
with materials science workflows (Brandt et al., 2021). In industry, software platforms (e.g., the Citrine 
Platform (Informatics, 2022)) that combine the data management infrastructure and AI-based tools 
facilitating materials design provide customizable solutions for corporate labs, which have more 
consistent pipeline workflows and can afford the resource-intensive infrastructure. The FAIR Data 
Infrastructure for Physics, Chemistry, Materials Science, and Astronomy e.V. (FAIR-DI), a European-
originated effort, aims to build a reliable infrastructure for data from materials science, engineering, 
and astronomy that follows FAIR principles (FAIR-DI, 2022). The FAIR-DI launched the NOMAD 
repository1 in 2014 and has been developing data management and sharing support. Their recent 
FAIRmat hands-on tutorial series (FAIR-DI, 2022) is designed to provide connections between the 
existing infrastructure and researchers’ daily practices. 

More recently, as a paradigm shift rooted in the exponential growth of computing power, 
integrated systems of AI-based predictions and experimental automation via robotics are explored and 
examined to accelerate materials discovery with the promise of replacing the manual and human-
intensive material discovery process (Pyzer-Knapp et al., 2022). For example, a technology roadmap 
was outlined to articulate the hardware and software infrastructure requirements and demonstrate a 
re-imagined role of humans when ensuring data is appropriately managed, aggregated, standardized, 
and shared (Delgado-Licona & Abolhasani, 2023). The analysis of the potential to apply accelerated 

 
1 NOMAD repository https://nomad-lab.eu/ 

https://nomad-lab.eu/
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materials discovery in clean energy highlighted insufficient experimental data sets for AI model 
training as a limitation for clean energy as a relatively new technology (Maleki et al., 2022). 

Despite these particular efforts and the overall progress in developing tools, standards, and 
practices, the adoption of these infrastructure and tools by individual “small” labs remains limited. No 
direct solutions have been provided for individual labs to streamline their workflows and efficiently 
prepare their data for sharing throughout the research life cycle. Instead, these labs use informal 
sociotechnical workflows that combine documented procedures, undocumented conventions, semi-
automated tools, and manual processes. This research determines the informal workflows operating 
within a top material science lab. They are documented and described using a formal workflow graph 
notation and analyzed using qualitative and mathematical graph analysis. 

 Research Questions 

This research aims to identify potential gaps and challenges for small lab MSE research replicability 
(trustworthiness), data availability (transparency), and attribution with an in-depth analysis of the 
practices supporting workflow and data management at a leading lab. 

To identify the gaps and opportunities in the current research practices for these improvements, 
this study is designed to answer the following research questions probing the trustworthiness and 
transparency of MSE data curation: 

 

1. To what extent does research depend on manual processes for information management? 

2. Explicit processes: 

a) what processes concerning data and research workflow management are documented? 

b) to what extent are documented processes consistent with practice? 

3. To what extent are documentation processes complete enough to support another person’s 
replication of  a result within the lab (without further communication with the original researcher)? 

4. To what extent are data management processes robust enough to survive the departure of  a project 
member or the loss of  an individual’s personal computer or storage? 

5. To what extent are workflow data, outputs, and documentation sufficient to describe responsibility 
(or support attribution) for published results? 

 Data and Methods 

 Overview 

This research focuses on practices within the research group for several reasons. First, internal data 
management is a prerequisite for external data-sharing and transparency. If research information 
created by one researcher becomes unavailable, uninterpretable, or irreproducible for a close team 
member, there is little hope it can be made meaningfully available for external reuse and review. 
Second, MSE relies largely on internal processes to guarantee replicability; there are no formal 
processes for external validation, systematic studies of replicability conducted across the field, or 
systematic reporting guidelines for reporting failures. Further, null results and those deemed 
uninteresting may end up in the file drawer and, therefore, unavailable for any external examination. 
Moreover, even published results of sufficient commercial value for an enterprise to attempt them in 
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production may fail and be discarded without any subsequent reporting. Third, MSE relies almost 
entirely on internal processes to ensure the appropriate attribution of work. 

This approach employs a purposive case study design. A leading MSE research lab is selected, and 
selected lab members are interviewed in detail about their most important research project. As 
illustrated in Figure 1, the collected interview data were coded to create a standardized description of 
each task conducted for the project step, which was used to construct a formal workflow process graph. 
By tracing across and within these graphs, the overall collaboration and information flow patterns are 
characterized, and the extent to which information shared with the group is sufficient for replication 
and attribution is evaluated. 
 

 

Figure 1. Overview of data sources and methods. 

These workflow graphs are supplemented with information gained by a review of lab 
documentation and an audit of the lab’s digital repository. With manual documentation coding, rules 
are extracted, which could be tested using extracted file-level metadata (digital forensics) collected by 
the audit. 

 Case and Interviewee Selection 

The use of “small lab” is common in the literature; however, it is often unaccompanied by a precise 
definition. Within this paper, the term “small lab” refers to a set of researchers that: 1) self-identified as 
a research collective, 2) aims to conduct research and produce scholarly communications, 3) is 
substantially responsible for identifying its research agenda, design, and methods, 4) contains under 20 
people, and 5) conducts experiments. 

Although it is impossible to precisely determine the number of “small labs” in science, in general, 
because no comprehensive survey of research groups exists, however, past research into research group 
size in selected disciplines and countries (e.g., Brandt et al., 2021; Cook et al., 2015; Qurashi, 1984; 
Seglen & Aksnes, 2000) suggest that “small” research groups are a common or the predominant form 
of organization within the natural and applied sciences. 
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The total number of research groups in MSE is unknown. However, public university rankings 
establish that at least 750 academic materials science programs exist worldwide, and a substantial 
proportion of these probably include small MSE labs. 

Professor Rafael Jaramillo’s group conducts experimental materials science within the Department 
of MSE at the Massachusetts Institute of Technology (MIT) --iin  Cambridge, Massachusetts, USA. 
Their research focuses on the synthesis, properties, and application of electronic materials. Each 
research project in the group generates many experimental data sets and can be supplemented by 
computational studies to reveal mechanisms or analyze structures. This typical type of workflow bonds 
the four elements of MSE research: 1) structure and composition, 2) synthesis and processing, 3) 
properties, and 4) performance (Flemings, 1999). 

The Jaramillo lab meets all the criteria of a small MSE lab, it has a scientific aim, collects its data 
from local experiments, is composed of less than 20 Full Time Equivalent staff (FTEs), provides its 
scientific direction, and oversees its methods and infrastructure. However, the lab is unlikely to be 
statistically representative of small materials science labs for several reasons. 

The external rankings of MIT’s materials science department place it in the top five schools 
worldwide. The MIT is a well-resourced institution, and the MIT faculty are typically well-supported. 
The MIT faculty and Professor Jaramillo specifically successfully obtain external research support. 
Professor Jaramillo is interested in reproducible research and open science: he has published in this 
area, his group has developed related software prototypes and grant proposals, and has advocated for 
reproducible and open science practice within his institution and discipline. Therefore, this lab should 
be considered a near-best case for FAIR data workflows in small materials science labs. It is 
implausible that many other small experimental materials science groups have the resources, 
experience, or interest to perform substantially better in this area. 

Synergistic collaboration between group members, including graduate students and postdoctoral 
fellows, allows for the continuous monitoring of lab equipment. This collaboration is facilitated by 
shared information repositories, including a group ELN in LabArchives, a group Dropbox account, 
and Google Drive. Access to all the cloud-based storage and services is provided to the group via MIT 
campus-wide site licenses. The protocol for saving and sharing information is specified in a group 
manual, which all researchers in the group are encouraged to follow for the group repositories and 
personal data storage systems. Therefore, this lab is representative of good practices for data-sharing 
because individual data from one researcher is, ideally, stored in a format that is comprehensible and a 
location that is accessible by all members of the lab. Consequently, reproducibility of research is 
possible in the absence of the originator of the research. 

Investigating the workflow of four researchers within the Jaramillo group highlights which 
practices are most essential to open and reproducible research; these practices appear to be 
standardized across the researchers in the lab despite idiosyncrasies due to personal preference. 
Identifying these practices allows other “small academic labs” to formulate and adopt the most 
effective structure for their data storage framework. 

 Data Collection Methods 

Structured interviews were conducted with four graduate students in Jaramillo’s group to obtain the 
specifications of their workflow, data profile, and challenges in daily practices. This study (Exempt ID: 
E-2317) was exempt from further review by the Committee on the Use of Humans as Experimental 
Subjects (COUHES) at MIT on June 2, 2020. 

Two researchers interviewed each graduate student: one served as the interviewer and the other as 
the transcriptionist. The interview audio was recorded and reviewed, and the transcribed notes were 
compared post-interview for completeness and accuracy. 

The interview protocol (e.g., Appendix I) consisted of three sections: 1) interviewee background, 2) 
top priority project background, and 3) top priority project workflow. The protocol was a guideline for 
the interviewer to construct the most complete narrative of each student’s workflow. Each question was 
explicitly asked or indirectly answered with the student’s response to a different question. 
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For the last section (i.e., top priority project workflow), it was evident that the most natural 
interview process was one in which the student first described the overall workflow for the selected 
project and then was prompted to recall each operational step. The interviewer then asked follow-up 
questions to fill in gaps and probe for additional detail. 

 Interview Coding 

The interview coding process aimed to describe each workflow step in a systematic structure database. 
A wide range of existing formal models for provenance and workflow (e.g., Jandre et al., 2020). 
However, most of these are designed for automated execution and contain much more detail than is 
feasible to elicit during a standard interview. Therefore, a simplified coding approach was used in 
which the actions that each described an action were labelled with their objective, task, and sub-task. 
The sequence, actor, input, output, data source, data target, level of automation, type of action, 
equipment, and methods used were recorded using standardized codes (e.g., Appendix II for the coding 
method and dictionary.) Then, this tabular data was used to impute collaboration and data-
dependency graphs (e.g., the following Results section). 

 Workflow Representation 

Workflows were represented as formal graphs and social network analysis methods were applied. This 
follows a common approach to interpreting workflows, first documented by Tan et al. (2010). The 
graph systematically describes all process, informational, and collaboration dependencies elicited by 
the interview process. By analysing these graphs, workflow gaps were visually and analytically 
identified, processes concerning the stated policy were evaluated, and potential interventions were 
probed. 

This core workflow graph was augmented in several ways. First, a collaborator network graph was 
created by coding the interviews directly for any mentions of collaborations. Second, separate 
dependency, collaboration, and information flow graphs were derived directly from the workflow 
process graph. Finally, graphical methods from network and social network analysis (Carrington et al., 
2005; Horwitz & Reps, 1992; Sharir, 1981) were applied to probe questions related to collaboration 
(e.g., analysis of connectivity and centrality), attribution (e.g., comparing the explicitly elicited 
collaboration graph with its workflow-induced counterpart), and replicability (e.g., dependency and 
subcomponent analysis of the information flow graph) (Appendix III-A).  

 Digital Forensics 

During the interview process, the lab used a shared folder in Dropbox as its official repository for 
collected data and documentation. With permission from the Principal Investigator (PI), a snapshot of 
the repository contents was cloned, and all of the file system metadata for use in a digital forensic 
analysis were collected. For consistency with lab policies and the timeline of the projects evaluated, the 
analysis was restricted to files deposited between January 2019 and January 2022. 

Deposit patterns demonstrated that the repository was actively used, with deposit rates varying 
seasonally (Appendix V). All information was collected for 31,929 files, including file names, paths, 
content hashes, client-side modification, and deposit times. Additional internal timestamps and content 
metadata were obtained for image files, which are a common set of raw data formats used in this lab. 
Finally, many files used a naming convention to embed additional information, such as creation date, 
creating user, and creating instrument; therefore, regular expression-based cleaning and parsing to 
extract this information was used where possible. This information set was then used to check for 
inconsistencies with documented information organization practices, as described in the following 
results section. 
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 Post-Analysis Validation 

Appendix III-B gives details on post-analysis validation with follow-up interviews and documentation 
review.  

 Results 

 Workflow Overviews 

For context, the workflows for each of the four projects are described as follows.  

Interviewee A was involved in generating each output with the workflow sequence: sample 
preparation, synthesis, characterization, and analysis. The workflow sequence was iterative, so the 
analysis phase results informed how the next iteration’s synthesis process was tuned. They use a 
personal LabArchives notebook to record observations. Metadata from equipment is recorded in the 
group Dropbox, and pre- and post-processed data are saved to the group Dropbox. 

 

Figure 2A. Workflow overview: Project A (workflow steps by phases, description, and type). MBE: 
Molecular Beam Epitaxy; XRD: X-ray Diffraction; XRF: X-ray Fluorescence.  

Interviewee B received the synthesized sample from a collaborator. They were responsible for 
preparing the sample for analysis, characterizing it, and analyzing the data. They used a personal 
LabArchives notebook as an ELN; therefore, any conditions needed to interpret and replicate a 
process were recorded. The group LabArchives notebook records measurements on lab tools that are 
shared to maintain a consistent tool log (required by the professor). The group Dropbox is used to save 
raw data directly from instruments. Post-processed data is saved to a personal Dropbox. 
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Figure 2B. Workflow overview: Project B (workflow steps by phases, description, and type). XRD: X-
ray Diffraction; MLA: Multilayer; SEM: Scan Electron Microscopy. 

Interviewee C received the synthesized materials from a collaborator. They prepare the acquired 
sample, characterize it, and analyse the results. Finally, they transform the sample via a laser setup; this 
process is iterative as the transformed sample is characterized. A personal OneNote notebook is used 
for experimental notes. OneNote is manually synchronized to the group LabArchives notebook. The 
group Dropbox records all sample notes, raw data, and analysed data. 

Interviewee D is directly involved in each sequence step, which includes sample preparation, 
characterization, analysis, and simulation. A personal LabArchives notebook is used to write details of 
each experiment and record measurements from the equipment used during the synthesis process. The 
group Dropbox saves equipment metadata and raw or lightly processed data from characterization. A 
personal Dropbox is used for processed data. 

Of note, each workflow is hierarchical; each project does not interact (there are no connecting 
branches), and the work can be represented as a set of independent, self-contained tasks (summary 
graph statistics are shown in Appendix V, Table A1.) Most of the tasks contain one atomic action. In 
addition, there is a rhythm across each workflow in which the type of task at each step alternates. 

All four interviewees used instruments or equipment outside their lab, either at a shared facility or 
a collaborator’s lab. Each interviewee saved a copy of the raw data from those instruments in the 
group Dropbox; however, they had different practices when transferring data. Each in-house 
instrument in the lab is overseen by an unofficially designated group member for maintenance. 
Regular maintenance notes for each in-house instrument are recorded in the shared LabArchives 
notebook folder. 

Group members regularly use equipment outside the lab and MIT, which interviewees indicated 
creates additional data transfer and documentation challenges. Interviewees noted that equipment 
within the MSE department is locatable through an internal wiki; however, no other central 
documentation or standardization around equipment configuration, data transfer, network access, or 
acknowledgment of equipment use exists. 
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Figure 2C. Workflow overview: Project C  
(workflow steps by phases, description, and type). XRD: X-ray Diffraction. 

 

Figure 2D. Workflow overview: Project D (workflow steps by phases, description, and type). TMD: 
Transition-metal dichalcogenide; XRS: X-ray Spectroscopy; XPS: X-ray Photoelectron Spectroscopy; 
XRD: X-ray Diffraction; FTIR: Fourier Transform Infrared Spectroscopy; DFT: Density Function 
Theory. 
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 Workflow Automation 

Limited systematic research on the rate and frequency of human errors in scientific research generally 
(or MSE specifically) exists; however, a long history of research in human performance and reliability 
engineering suggests that human error rates are substantial in the absence of well-engineered 
monitoring and error-mitigation regimes (Reason 1995; Jacobs 1995). For example, over the last 15 
years, human error in medicine has been a focus of study. Systematic reviews demonstrate the high 
level of harmful and avoidable human error and the efficacy of error, reduction processes, such as the 
adoption of automated recording systems and the use of explicit checklists and logs for manual 
procedures (Rodziewicz et al., 2020; Institute of Medicine, 2000). 

During the interviews, information was collected about the automation associated with each 
instrument, storage facility and analysis method. As described in the methodology section, each 
workflow step was coded for the type of action performed and level of automation used: 1) an 
“automated” if the step is initiated automatically following the prior step, 2) “partially” automated if 
the operation was launched manually but was entirely described by digital metadata (e.g., 
configuration files), or 3) as “manual” if the step depended on manual initiation and manually 
configuration for correct operation. 

Figure 3 summarizes the selected characteristics of the workflow. Overall, this figure reveals that 
workflow is dominated by manual activities. Figure 3 provides an answer to the first research question 
concerning automation, i.e. 

 
1. To what extent does research depend on manual processes for information management? 

Automation is not a panacea and can increase system complexity or decrease local transparency in 
ways that increase errors across a broader system. However, automation is often recommended for 
tasks not involving complex judgment (e.g., file transfers) and are not otherwise associated with a 
specific performance, audit, or quality assurance procedure. Further, targeted automation enables 
people to shift their efforts to tasks where judgment is required, reducing the cost and effort of logging 
and auditing. Therefore, where errors occur, they are more readily detected. 

Further, explicit communication and documentation are relatively infrequent. There is a high level 
of reliance on manual transmission of information (e.g., for instrument setup or contextualization of 
the analysis) and a substantial incidence of email and portable media for information storage. 
Together, this suggests a significant opportunity for human error in data management and 
organization. 

 Collaboration and Information Flow 

In the previous section, the workflows were used to show the dependencies between steps in the 
research process. The same workflow graphs were used to derive the dependency graph for each 
analysis and, in conjunction with interview data, to derive the collaboration networks. 

The information connections within and across projects (Figure 4) are densely interconnected 
within projects, contrasting with the linearity of the process used to produce the information. Further, 
most information flow is implicit with a shared context. Information rarely flows through direct input–
output. There is no information flow between projects. 

 



12   |   Reproducible and Attributable Materials Science Curation Practices  

IJDC  |  Conference Paper 

 

 

Figure 3. Selected characteristics of the workflow steps (summarizes the type of action described in each 
step, proximate data source, and level of automation).  
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Figure 4. Project information exchange (implicit and indirect information exchange occurs frequently 
within projects but does not connect projects). 

 In addition, collaboration networks (Figure 5) are partitioned by project and workflow. The size of 
the grid varies substantially across projects. 

 

Figure 5. Project collaboration. 
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 Lab Practices 

Characterizing documented data practices 

The second research question concerns documented practices: 

2(a). What data and research workflow management processes are documented? 
2(b). To what extent are documented processes consistent with practice? 

The practices were identified with direct interview questions administered during face-to-face 
interviews of the PI and group members. Then, copies of the documented processes were obtained 
from the subjects to characterize these. 

During the interviews, one interviewee, who self-identified as a founding member of the group, 
mentioned a document “Jaramillo group new member checklist,” which described shared computing 
resources, lab safety, and access, and data management practices. The document and group wiki site 
were reviewed to summarize the documented practices. In addition, the documented practice was 
compared with practices elicited by interviews for relevance to the research questions, and to inform 
the interpretation of the workflow networks as follows. 

The practices that were most relevant to data management and scientific workflow management 
were identified and grouped into three categories: 1) information sharing, 2) security, and 3) 
organization (Appendix IV.) 

Consistency of documented versus recalled and observed practices 
Four strategies were employed to evaluate the consistency of the recalled practices with documented 
practices: 

1. In general, all instances were identified where subjects explicitly referred to documented or 
established practices during the interview, either during the description of  their project or 
separately. 

2. For information sharing practices, network analysis of  the workflows was used to identify where 
each information object was stored and compared this against documented policy. 

3. For information security processes, whenever the network analysis identified information as stored 
in a non-group location, the subject verified whether the location was backed up using CrashPlan 
or an equivalent MIT service. 

4. For information organization, the group Dropbox file listing was reviewed to confirm practices. 
 

The results are summarized in Table 1.  
 

The most significant deviation with formal documented practice is in the area of information 
organization. Of the 31,929 deposited over 2 years, less than a quarter (23%) provided could be readily 
assigned a collection date, researcher, and instrument. Furthermore, where collection dates were 
assigned, they often (53.5 %) pre-dated and, in rare cases, post-dated the modification time stamps 
provided by the researcher’s computers when they were delivered to Dropbox (or by the image 
creation software, where applicable). In the absence of more systematic processes when maintaining 
the provenance and authenticity of digital records, this discrepancy raises the possibility that data files 
could have been modified after collection. 

 
 
 
 
 



             Ye Li, Sara L. Wilson and Micah Altman   |   15 

IJDC  |  Conference Paper 

Table 1. Comparison of documented group practice with recalled individual practices. 

Documented 
procedures 

Inconsistencies with practice 

Information sharing Practices are predominantly consistent with documentation, although 
occasional lapses occur 

Information security Practices are consistent with documentation 

Information organization Practices are frequently inconsistent with documentation; however, the 
instrument, username, data, and sample can often be identified by 
human inspection of the file and directory name 

 
The following assessment section provides more details on information sharing. 

 Process Robustness Assessment 

To address the remaining research questions, the mathematical graphs describing the workflow 
process, information, and collaboration were measured and compared.  

Internal replicability 
The next research question concerns internal replicability: 

3. To what extent are documentation processes complete enough to support another person’s 
replication of a result within the lab (without further communication with the original researcher)? 

In general, a documentation process might be implicit or explicit, and the documentation might be 
integrated with analytic outputs or stored separately. As noted in the previous sub-section, the 
documented practice in this lab does not include active replication of results before publication, nor 
does it require that materials and instructions sufficient to replicate published articles are available. 
Follow-up interviews (discussed at the end of this section) revealed that some projects have since 
adopted an informal local practice of depositing replication materials to the group drive after 
publication. 

The group exhibits documentation practices during the data collection and analysis process to aid 
future replication. The interviews and workflow analysis demonstrate the use of multiple 
documentation strategies. For example, some data (and analysis) formats and systems provide the 
capability to store information on how the data (or analysis) was produced and how it is to be 
interpreted. When this capability is used, the documentation is described as integrated into the data 
(e.g., the data could be termed “self-documenting.”) 

However, much of the time documentation is stored separately from the outputs produced by 
measurement, experiment, and analysis. The researcher can manually add this separate 
documentation (e.g., a lab notebook entry or notes file). Alternatively, documentation may be implied 
by a previous step (e.g., when a measurement process is controlled by a configuration file already 
recorded). 

The workflow information graph was used to identify when data or analysis was produced. Then, 
the graph was analysed to match each output to potential documentation based on the following: 

• Outputs were coded as having “manual” documentation based on an analysis of  the workflow 
graph to determine that data and documentation objects were produced during the same 
substage, or supplementary statements in the interviews that a specific output was manually 
documented. 

• Outputs were coded as having “integrated” documentation when the output format matched a 
specific format confirmed through the interviews to be part of  a general self-documentation 
process. 
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• Outputs were coded as having “implicit” documentation when they were derived from 
processes that were (semi-)automated and where either log files or generating scripts were also 
stored. Table 2 summarizes these categories of  documentation. 

 

Table 2. Documentation of outputs (missing documentation obstructs reproducibility). 

 Integrated Manual Implicit Missing 

Processed data 0 (0%) 8 (88.89%) 1 (11.11%) 0 (0%) 

Analysis 0 (0%) 8 (44.44%) 0 (0%) 10 (55.56%) 

Raw data 7 (50.00%) 5 (35.71%) 2 (14.29%) 0 (0%) 
 

Of note, the existence of documentation necessary for unassisted replication is not sufficient. The 
completeness of the documentation, if it existed was not evaluated, only its presence. However, analysis 
documentation was missing in over half of the cases examined. This obstructs future replication of 
results and publications, which must rely on communication with the researcher who conducted this 
analysis (and on their memory) and trial-and-error. 

Robustness of storage practices 
The following research question concerns the robustness of storage practices: 

4. To what extent are data management processes robust enough to survive the departure of a project 
member or the loss of an individual’s personal computer or storage? 

The workflow information graph was used to probe this question to identify all collected data 
(digital and physical samples created as part of each scientific workflow), metadata, and analysis results. 
Then, the process in the graph was used to trace the flow of these objects across tasks and into storage 
locations. From this set of traces, the content of the designated group storage location post-analysis was 
inferred. The results are summarized in Table 3. 

Table 3. Proportion of output in managed storage, by type (a substantial portion of highlighted 
outputs are at risk). 

Type of research outputs Percentage 

Metadata 44 

Analysis 44 

Raw data 79 

Processed data 100 

Note: processed data includes derived, linked, and cleaned data; metadata includes 
configuration files, output logs, and manual documentation 

 
On the positive side, almost all data objects (with exceptions) are deposited into institutionally 
managed shared group storage by the process end. This is consistent with the documented lab policy 
and is necessary for the work to support future data-sharing and for the workflow to be robust to the 
loss of an individual computer. 

However, over half of the metadata and documentation and half of the analysis produced is never 
copied or transmitted to a group location but remains accessible solely from individually owned media, 
computers, or accounts. This will decrease the utility of data-sharing, because most data is not self-
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documenting, and threatens the replicability of analysis. If a group member were to depart, there is 
insufficient information available to ensure that the work can be replicated or re-validated, even 
internally. Further, in a small number of cases (2), raw data were stored outside the group storage, 
contrary to documented policy. 

The same approach described previously was used to identify when analyses depend on manual 
information transfer rather than being automated. Given the high frequency of manual operations 
documented in the previous section, it is unsurprising that 100% of the analyses relied on manual 
information management at an earlier step in the experiment and measurement process. 

Serendipitously, file forensics data collected from the lab-shared storage system provides a glimpse 
of the reliability of manual transfer processes. The delay between data creation and deposit by 
comparing the manually recorded date in the path with the automatically recorded date in the shared 
file system can be measured. For half of these files, the delay is relatively small (40% of these files were 
deposited within 1 day). However, a substantial percentage were considerably delayed (25% of files 
were deposited after a delay exceeding 95 days). Of note, two mechanisms could produce significant 
delays. First, where raw data is collected and transferred by hand, errors, interruptions, or forgetfulness 
can contribute to the delayed deposit. Second, during the validation interviews, it was identified that 
some projects adopted an informal process of adding files associated with a publication, after that 
publication had been accepted. These added files can include processed data files and descriptions of 
data collection and analysis processes. It is impossible to determine the proportion of lag attributable to 
each mechanism because of the inconsistent use of documented naming practices and the variation in 
undocumented practices. 

In addition, the 2 years of files examined included a substantial number (863) of image files that 
contained internal creation-time metadata produced by the original software. By comparing this time-
stamp with the shared file system time-stamp, the elapsed time between creation and deposit could be 
computed. The delay is quite small for most of these files; less than a workday (75% of these files were 
deposited within 5 hours). However, the distribution of deposit latencies has a long tail, with some files 
not deposited until months (3,008 hours) after creation. 

Attribution robustness 
The final research question concerns attribution: 

5. To what extent are workflow data, outputs, and documentation sufficient to describe responsibility 
(or support attribution) for published results? 

To examine the final question, respondents were interviewed to elicit lists of all the collaborators 
on the project and their general collaborative relationships. This list includes active collaborators (e.g., 
actors who supply material, perform an analysis, or contribute to writing for publication) and passive 
collaborators (actors who provide access to equipment or software). From the interviews, it was 
confirmed that there were no written or standard processes or policies concerning recording or 
acknowledging collaborators. In assigning attribution, interviewees reported relying primarily on 
memory rather than written documentation and outputs. 

A partial exception to the reliance on memory is an informal practice discovered during the file 
forensics analysis. A common practice was to structure the directory trees so that data produced by a 
specific instrument was contained under a folder named for the principal investigator. Where this 
practice was followed with a particular instrument this was coded as documentation of the 
collaboration. 

Workflows may document collaborations explicitly (e.g., with entries in a lab notebook or an 
author line in an analysis document) or indirectly (with an email correspondence history). To quantify 
the degree to which attribution relies on memory, the list of collaborators stated by interviewers was 
compared with a list of collaborators that could be detected from the workflow outputs and 
documentation. To achieve this, direct and implied collaborators were extracted from each workflow 
step (e.g., when another person was recorded as doing the analysis when the interviewee sent someone 
an analysis by email, or an analysis when an external instrument was used). 

As expected from the interviews, many collaborators are omitted from workflow documentation or 
action altogether. Table 4 summarizes these omissions. 
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Table 4. Undocumented collaborators (types of collaborations that were recalled but not documented 
in project work). 

Project Undocumented types Percentage of undocumented 
contributors 

A Co-researcher 33 

B None 0 

C Co-researcher, sample provider 40 

D Instrumentation, prospective researcher, co-
researcher, software 

40 

 
As shown in Table 4, a significant proportion of the collaborations could not be associated with the 

work process, information used in it, or the analysis produced by it. 

 Discussion: Toward More Reproducible and Attributed 
Practices 

In summary, the workflow, documentation, and digital forensics analyses revealed the strengths and 
limitations of current practice. Practices in the lab mitigate the risk of data loss resulting from the 
failure of an individual’s computer and ensure access to the raw data collected for the lab research.  

The preservation of the data is necessary but insufficient for trustworthiness and transparency. Lab 
data curation practices often deviate from the stated policy and vary across projects, especially for the 
metadata and documentation needed to contextualize and analyse the collected data. Moreover, the 
policy and practice are insufficient for the attribution, replication, or verification of the labs’ published 
results. 

Therefore, the integrity and continuity of lab research are threatened if an individual fails to 
maintain private records of attribution and data provenance or withdraws from the research group. 
The following improvements are required. 

In general, several general strategies could be employed to address the workflow gaps and should 
be considered as an approach to the gaps discussed previously: 

• The addition of  processes to regularly audit and validate ongoing projects for reproducibility 
and attribution. 

• Changes in the research infrastructure (defined broadly) to automate the capture, transfer, or 
storage of  critical information, preferably in standardized formats with necessary metadata. 

• Changes to the lab policies regarding requirements for those activities are performed manually. 

Recommendations for Auditing  

It is a truism that manual processes and policies must be regularly audited and verified to be effective. 
Auditing and verification should evaluate the use of documented practice and the achievement of 
desired outcomes. 

Recommendation 1  
For the documented practices, minimal automated audits, in support of sanity checks, could verify 

that documented naming conventions are being followed and that systems are running backup 
software. For outcomes, less frequent (e.g., semi-annual) manual audits could be used to validate that 
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the current analytic results from each project could be reproduced from (or at least traced back to) data 
and metadata curated in the group storage. 

 Recommendation 2 
Automated processes sometimes fail or are misconfigured. Automated validation could be used to 

detect system failures and flag unusual activity patterns for further investigations. For example, 
automated analysis of group storage could be used to flag the absence of data collection and processing 
for purportedly active projects. Automated analysis of deposits could provide evidence of the “liveness” 
of projects and individuals. In addition, automated analysis could correlate the timing of lab notebook 
updates with the timing of data deposits into the group storage system, substantial data 
changes/updates without corresponding lab notebook signal a potential threat to reproducibility. 

Recommendations for Upgrading Infrastructure 

Where feasible, automated infrastructure is attractive because they do not require people to change 
behavior–which is often costly, difficult to assess, error-prone, and requires consistent focus to 
maintain. While a fully automated infrastructure for materials science remains currently too expensive 
and immature for many labs, more minor changes in infrastructure and tooling have the potential to 
mitigate a number of the gaps identified by the workflow analysis. 

Recommendation 3 
All of the reported workflows involved the extensive use of personal portable storage to transfer 

data from experimental instruments manually. In addition, the file forensic analysis showed that the 
delays between file creation and deposit could be quite significant. In addition, no systems or processes 
are in place that would detect common categories of human errors that occur at this stage, such as 
erasing or overwriting local files, loss or replacement of the storage device, failure to delete files after 
the transfer is complete, or transfer of the files to an incorrect destination (e.g., user’s personal 
computer or cloud) should these occur. This suggests that manual data transfer and operations will 
increase errors. 

The portable storage is typically a simple off-line USB “flash drive.” Alternative USB-compatible 
mobile storage devices, including built-in wireless networking and data synchronization capabilities, 
are readily available. Although researchers would need to transport these storage devices with a 
network connection to the instruments and plug them in, the manual data transfer to cloud storage 
could be automated, reducing the risk of reproducibility. This portable storage device would not 
introduce more security risks for instruments in shared facilities than an off-line USB “flash drive” 
would. During the analysis validation interviews, participants noted that enacting this recommendation 
would require agreement and action from the equipment or facility owners to align information 
security policies. 

Recommendation 4 
Similarly, most workflows involved a significant amount of regular transfer from personal cloud 

(e.g., Dropbox) to a group cloud storage. When multiple independently managed locations are 
unnecessary for data processing, analysis, and backup, eliminating the use of multiple storage locations 
would lower the risk of introducing inconsistency. When multiple independently managed services are 
necessary, services are readily available that could monitor target folders in one storage system and 
replicate or synchronize them with another. Using these tools and a more systematized practice of 
folder organization for work products maintained in personal storage would enable more reliable and 
robust data lab practices without sacrificing the convenience of personal cloud storage accounts. 

Recommendations for Refining Practices 

Although infrastructure and audition of current practices could be expected to facilitate the workflow 
gaps identified in this research, additional refinements to lab practices could be required in two areas. 
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Recommendation 5 
Develop explicit practices around collaborator attribution. Practices are needed to identify the 

contributions of collaborators systematically. This might include: 1) enhancing existing workflow 
project documentation (e.g., in the lab notebook) to identify when the researcher uses externally 
contributed resources, borrowed equipment, or information received from a collaborator, 2) explicitly 
saving contributed data, analyses, and comments from collaborators in the group storage, rather than 
in personal emails, and 3) defining contributor roles according to taxonomy, such as the Contributor 
Roles Taxonomy (CRediT),2 in group documentations. 

Recommendation 6 
Develop explicit practices around reproducibility beyond the stage of raw data: 

• Make documentation for standard practices at commonly used equipment in external 
locations (i.e., other MIT facilities, such as MRL and DMSE). Consistent practices at these 
facilities would allow for the comprehensible transfer of data between researchers within 
the lab. 

• Establish a group-shared location for metadata (especially equipment parameters), which 
is essential to reproducibility. Monitor the progress in open data standards in the field and 
start to adopt them. 

• Encourage analyses to be conducted in a framework that builds reproducibility, for 
example, using executable scripts or notebooks stored in cloud storage rather than 
spreadsheets transmitted by email. 

 Future Research 

In this research, gaps were identified in an exemplar set of materials science workflow processes and 
characterized approaches to address those gaps. However, the effectiveness of specific practices and 
approaches is an open question: Empirical evidence, preferably from designed interventions, is needed 
to reliably measure how better practices can improve reproducibility and research attribution. (Altman 
& Cohen, 2021; NASEM, 2018)  

Moreover, these practices are embedded in and responsive to a much broader system of scientific 
incentives, institutional and organizational collaboration, and professional training (Altman & Bourg, 
2018) – research is needed on how effective practices can be aligned with incentives, training, 
institutional coordination, and infrastructure improvement.  

Intrinsically, recognizing the value of FAIR data-sharing and computational use of experimental 
data for the research community in general and their study could further motivate individual 
researchers and their teams.  

Hiring data curators or research workflow facilitators to provide discipline-specific support for 
particular groups and departments could further enable researchers to overcome the barriers to 
starting new practices.  

The improvement in interfaces for human–computer interaction, accessibility, and security of 
cloud-based systems could be the key to lowering individual groups’ barriers to fully adapting the 
digital workflows recommended, especially when shared instrument facilities are often inseparable 
components of the infrastructure.  

With the improvement in research infrastructure for MSE that could integrate experimental data 
management and sharing and AI-based materials design, it will become critical to study how “small 
academic labs” could adapt to this infrastructure cost-effectively for open and reproducible research 
when maximizing creativity. 

 
2CRediT https://credit.niso.org/ 

https://credit.niso.org/
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 Data Availability 

The deidentified data sets generated during or analysed during the current study, as well as the R 
scripts used for analysis and generating the research report, are available in the Zenodo repository 
under CC BY 4.0 license.3 
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 Appendix 

 Appendix I: Interview Protocol 

The interview protocol used in this research is included as file in the replication package: 
Appendix_I_InterviewProtocol.pdf  

 Appendix II: Coding Method and Coding Dictionary 

The coding of this research workflow was conducted in four phases. 

1. The first phase involved the direct translation of each interviewee’s narration. During this 
phase, the steps in the sequence that were explicitly stated were recorded. 

2. The second phase was an interpretation: the intended meaning of each statement was derived 
by assessing what the researcher implied but did not explicitly state. Each step of the workflow 
sequence had a series of sub-sequences that occurred before and after the main objective. For 
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example, when a physical material is placed in storage, it is implied that the next step involving 
it requires its removal from storage. The first and second phases were completed for all 
interviewees before progressing. 

3. The third phase was inference. The same synthesis, characterization, and analysis techniques 
were often used across interviewees, and each lab member was subject to the same regulations 
to achieve each objective. Therefore, knowledge of one interviewee’s workflow could be 
derived from what is known from another’s workflow. This was used mainly for details, such as 
the names of analysis software and data output formats. 

4. The fourth phase was extrapolation. The primary coder of this data was a materials scientist 
who conducted research in the same facilities used by the interviewees. This familiarity 
allowed for inferring implied steps from the workflow narrative that might not have been 
uncovered during the interview. 

No additional assumptions were made during the coding. Any gaps in information that could not be 
acquired from these four steps were left blank. 

The coding dictionary used in the study is included as a file: Appendix_II_CodeDictionary_deidentified.ods  

 Appendix III: A process of creating workflow graphs 
The process of creating the workflow graph is summarized as follows. For replication purposes, all de-
identified and coded interview data, the software code necessary to construct the graph in detail, and 
all the code needed to reproduce all figures and tables have been placed in a public archive: 
 

• A node on the graph represents each atomic action (step) in the workflow. The node 
documents all  characteristics of  that single action; 

o Process dependencies are represented through sequences and sub-sequences linked by 
“process” edges. 

o Actions performed by the same person, in a required sequence, for a single goal, and 
over a continuous period are represented by “sequence” nodes. Edges link each 
sequence to one or more child sub-sequences. 

o Actions performed within a sequence (e.g., by the same person) and practically 
simultaneous (they have no natural order and occur during a brief  period) are 
represented by sub-sequences. Edges link sub-sequences to one or more child steps. 

• Informational dependencies are represented by augmenting the graph with “informational” 
edges. An edge is created when one of  the following conditions holds: 

o When nodes share common data inputs; this represents passive information sharing. 

o When the output of  one node is the input of  another, this represents active 
information sharing. 

o When a single person conducts nodes during a continuous time (i.e., they are part of  
the same sequence), this represents implicit information sharing. 

• Collaboration (attribution) dependencies are represented by augmenting the graph with typed 
nodes and edges: 

o Collaborator nodes represent individual or organizational collaborators. 

o Edges are created from workflows to collaborators when either the collaborator is 
explicitly referenced in the action (e.g., sending results to a collaborator, receiving 
samples from a collaborator) or, by implication, when the action involves some 
instrument (or other tool) provided by a collaborator. 
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 Appendix III-B: Post-analysis validation 
After the interviews were completed and their data were coded and analysed, the results were validated 
with follow-up interviews and a documentation review. In the follow-up interviews, for each subject, 
the gaps presented by the preliminary analysis were reviewed, confirmed whether the subject believed 
the gap to exist, and addressed the gap in the workflow. When an action was not noted in the original 
interview, the gap was addressed differently. Where these discussions pointed to workflow steps 
omitted during the initial interview, the workflow graphs were updated to include these additions. 

In addition, the content of the existing group storage systems was reviewed (specifically, names, 
directories, and file types) to characterize data storage patterns per project and compare these to the 
patterns implied by the workflow analysis. In addition, content analysis was used to compare 
information organization naming practices with the documented lab policies. 

Semi-structured follow-up interviews were conducted with all participants to assess the strength of 
(dis)agreement with the analysis described previously, its main conclusions, and the recommendations. 
In addition, it probed for additional comments, reflections, and recommendations. Participants 
consistently agreed with the analysis and confirmed the existence of the gaps that were noted. 

Further, a number of participants reflected that since the initial interviews, they had noted some of 
these gaps and adopted informal practices within their project to address them. For example, one 
project had a local, undocumented, but intentional practice of, on the occasion of formally publishing 
an article, depositing into lab storage all analysis scripts necessary to reproduce the analysis in the 
article. 

In addition, participants agreed with all areas of recommendations. One caveat: most participants 
noted that they faced institutional challenges when automating data collection from instruments 
outside the lab. 
 

 Appendix IV. Summary of Documented Data Practices  

 Information sharing 
  

• P1. Shared data storage and management resources include a shared group account in 
Dropbox, a Group wiki, a shared group lab notebook in LabArchives, and a group Zotero 
account for sharing literature references. 

• P2. All raw data (defined as “data as-recorded by the measurement instruments”) must be 
stored in the group Dropbox folder and should never be modified. All internal lab computers 
are configured to save data to the group Dropbox folder automatically. Data collected outside 
the group lab must be manually transferred to the group Dropbox folder. Examples of  raw 
data are JPG from a microscope, TXT from a probe station, or files in a proprietary format 
such as RAW from XRD. 

• P3. Group members can store their analysis results wherever is most convenient. 

 Information security 
  

• P4. Group members must use the MIT Enterprise version of  CrashPlan to keep group-owned 
and individual computers backed up, especially the directories containing data or codes. 

• P5. Group members are requested not to store raw data outside group-managed storage. 

 Information organization 
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• P5. The group Dropbox folder should be organized using the folder structure: 
instruments\username\YYMMDD\samplename. 

• P6. Samples must be named consistently with a given scheme, including YYMMDD and a 
serial number. 
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 Appendix V:  AdditionalTables and Figures 

Table A1. Information exchange graph statistics. 

Direct connections Graph diameter Mean distance between steps 

1,660 5 0.2172682 

 

Table A2. Collaboration network 

Direct connections Graph diameter Mean distance between steps 

29 1 1 
 

 

Figure A1. Trends in file creation in group storage. 

 
 
 


