
IJDC | Conference Paper

Reconciling Conflicting Data Curation Actions:
Transparency Through Argumentation

Yilin Xia
School of Information Sciences,

University of Illinois, Urbana-Champaign

Lan Li
School of Information Sciences,

University of Illinois, Urbana-Champaign

Shawn Bowers
Department of Computer Science

Gonzaga University

Bertram Ludäscher
School of Information Sciences,

University of Illinois, Urbana-Champaign

Abstract
We propose a new approach for modeling and reconciling conflicting data cleaning actions. Such conflicts
arise naturally in collaborative data curation settings where multiple experts work independently and then
aim to put their efforts together to improve and accelerate data cleaning. The key idea of our approach is to
model conflicting updates as a formal argumentation framework (AF). Such argumentation frameworks can be
automatically analyzed and solved by translating them to a logic program PAF whose declarative semantics
yield a transparent solution with many desirable properties, e.g., uncontroversial updates are accepted,
unjustified ones are rejected, and the remaining ambiguities are exposed and presented to users for further
analysis. After motivating the problem, we introduce our approach and illustrate it with a detailed running
example introducing both well-founded and stable semantics to help understand the AF solutions. We
have begun to develop open source tools and Jupyter notebooks that demonstrate the practicality of our
approach. In future work we plan to develop a toolkit for conflict resolution that can be used in conjunction
with OpenRefine, a popular interactive data cleaning tool.

Submitted 12 February 2024 ∼ Accepted 22 February 2024

Correspondence should be addressed to Yilin Xia. Email: yilinx2@illinois.edu

This paper was presented at the International Digital Curation Conference IDCC24,19-21 February 2024.

The International Journal of Digital Curation is an international journal committed to scholarly excellence and dedicated
to the advancement of digital curation across a wide range of sectors. The IJDC is published by the University of
Edinburgh on behalf of the Digital Curation Centre. ISSN: 1746-8256. URL: http://www.ijdc.net/

Copyright rests with the authors. This work is released under a Creative Commons Attribution
License, version 4.0. For details please see http://creativecommons.org/licenses/by/4.0/

International Journal of Digital Curation
2024, Vol. 18, Iss. 1, 11pp.

1 https://doi.org/10.2218/ijdc.v18i1.943
DOI: 10.2218/ijdc.v18i1.943

mailto:yilinx2@illinois.edu
http://www.ijdc.net/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.2218/ijdc.v18i1.943
Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

2 | Reconciling Data Curation Conflicts: Transparency Through Argumentation

Introduction

Data curation and data wrangling are critically important, labor-intensive, and error-prone
phases in data science. A popular claim is that about 80% of the effort involved in data
analysis projects is spent on cleaning and preparing data sets (Dasu & Johnson, 2003;
Wickham, 2014), while the subsequent analytical techniques often only constitute 20%
of the effort. Not s urprisingly, researchers and curators spend s ignificant amounts of
their time cleaning data, either with general purpose tools (e.g., Excel) and programming
languages (e.g., Python, R), or using specialized tools such as OpenRefine (Verborgh &
De Wilde, 2013) or Wrangler (Kandel et al., 2011).

A data cleaning recipe is a workflowW that describes the data cleaning actions (i.e., data
transformations) that are performed on a “dirty” dataset D to improve its data quality
and obtain a cleaner version D′ = W (D). Data analysis results are generally considered
more trustworthy if the analysis pipeline—including the data cleaning workflow W —are
transparent and reproducible. The state-of-the-art approach to increase transparency is
to capture provenance information, preferably during the whole data-lifecyle, from data
collection, through data wrangling, analysis, all the way to the scholarly publication and
the creation of shared, digital research objects. In prior work, e.g., (Li et al., 2019;
Parulian & Ludäscher, 2022, 2023), the value of prospective, retrospective, and hybrid
provenance (i.e., combining the other two) has been demonstrated.

Collaborative Data Cleaning: A New Curation Challenge. In this paper, we con-
sider the increasingly important setting where multiple researchers and curators work
collaboratively on cleaning a dataset (Parulian, 2022). For example, a dataset D might be
split in k-ways horizontally, i.e., D = D1 ∪ · · · ∪ Dk , based on a meaningful selection
condition.1 Another way to split the work and avoid merge conflicts is a vertical split, i.e.,
where experts are assigned specific columns (attributes) to work o n. However, there are
several reasons why data curation tasks cannot always be so neatly divided up: First, there
are update operations that apply to disjoint regions (rows or columns) of a dataset, yet
indirectly depend on each other, e.g., via logic dependencies such as foreign keys. We will
not consider such indirect dependencies here (but explore them in future work). Another
important use case involves the assignment of overlapping regions of D to multiple
curators, e.g., because a clear (horizontal or vertical) cut is difficult to make, or because
the overall data cleaning process can benefit from the diversity of expertise, in which case
overlapping assignments are even desirable.

Resolving Conflicts Transparently Through A rgumentation. I t i s easy to see that
in collaborative settings, two update actions A and B can be in conflict: e.g., an existing
value v1 might be updated to v2 by A but to a different value v 3 by B . Clearly the actions
A and B are mutually exclusive. Asymmetric conflicts can a lso a rise: I f an u pdate A
applies to a row that another action C is deleting (for good reasons), then one could
argue that A should be rejected, since the update through A is moot because the row
no longer exists. In the following we propose to model conflicting data cleaning actions
A, B, C , . . . , as arguments in a formal argumentation framework (AF) (Dung, 1995). Such
argumentation frameworks can be automatically analyzed and solved by translating them
to a logic program PAF whose declarative, well-founded semantics (Van Gelder et al.,

1 An ecology dataset, e.g., may be split by species and then assigned to different domain experts.

IJDC | Conference Paper

Yilin Xia

Yilin Xia et al. | 3

1991) yields a transparent solution with many desirable properties: e.g., uncontroversial
updates are accepted, unjustified ones are rejected, and the remaining ambiguities are exposed
and presented to the user for further analysis e.g., via stable models (Gelfond & Lifschitz,
1988) and conflict resolution. If a researcher, curator, or auditor questions why certain
updates have been accepted, while others have been rejected, the underlying AF solution,
enhanced with a game-theoretic provenance semantics (Ludäscher et al., 2023) can be
explored (interactively if desired) to provide a transparent, logical justification. In the
following, we briefly review some background, then introduce our approach and illustrate
it with a detailed running example. In the final section, we summarize and discuss plans
for future work.

Background & Preliminaries

An argumentation framework AF is a finite, directed graphGAF = (V , E), whose verticesV
denote atomic arguments and whose edges E ⊆ V ×V denote a binary attacks relation. An
edge (x , y) ∈ E states that argument x attacks argument y.

a

b c

d

(a) Attack graph

a

b c

d

(b) Grounded extension

a

b c

d

(c) Stable extension #1

a

b c

d

(d) Stable extension #2

Figure 1. (a) AF with four arguments a, b, c, d and their attack relation. (b) The unique, 3-valued
grounded solution: a is accepted (blue), b is defeated (orange), and c, d are undecided (yellow).
GAF has two stable solutions: The undecided argument c can be chosen as accepted and
d as defeated, as in (c), or vice versa as in (d), yielding two separate stable solutions.

An example AF consisting of four arguments (vertices) V = {a, . . . , d} and an attack
relation E (directed edges) is shown in Figure 1. A subset S ⊆ V of acceptable arguments
is called an extension (or solution), provided S satisfies certain conditions. An extension
S is said to attack an argument x if an argument y ∈ S attacks x. The attackers of S are
the arguments that attack at least one argument in S. An extension S is conflict-free if
no argument in S attacks another argument in S. Conversely, an extension S defends
an argument x if it attacks all attackers of x. The arguments defended by S are those
that S defends; this is often described via the characteristic function of an argumentation
framework. (Dung, 1995) and others have defined various extension semantics. We
consider the skeptical grounded extension semantics, which has several advantages, e.g., it
can be efficiently computed, always yields a unique, 3-valued model in which arguments
(and thus edit actions) are either accepted, rejected, or flagged as undecided. We will also
consider stable extensions, i.e., 2-valued solutions that refine the grounded solution by
choosing acceptance or defeat of arguments in certain ways (Baroni et al., 2018).

The overall idea and appeal of formal argumentation results from the fact that the

IJDC | Conference Paper

4 | Reconciling Data Curation Conflicts: Transparency Through Argumentation

solutions to controversial arguments can be computed automatically. As it turns out the
unique well-founded model (Van Gelder et al., 1991) (and the set of stable solutions) of
an argumentation framework can be obtained from a simple but powerful recursive rule:

defeated(X)← attacks(Y , X), ¬ defeated(Y). (PAF)

The rule states that an argument X is defeated (in our terminology: a curation action is
rejected), if there exists an argument Y that attacks it and that is not itself defeated, i.e.,
accepted in our data curation terminology. Note that the AF approach, according to
(Dung, 1995), consists of two essential components: an argument generation unit (AGU)
that models the arguments and the associated attack graph (in our case the data curation
actions and their conflicts), and an APU (the PAF above) that is used to solve an AF and
determine which arguments are accepted, rejected, and undecided, respectively. For more
on formal argumentation, see the comprehensive handbook by (Baroni et al., 2018).

ARunning Example for Data Cleaning

We illustrate the key ideas of our approach to conflict resolution in collaborative curation
settings with a running example. Assume that there are two data curators, called Alice and
Bob, respectively, who are working independently on cleaning a dataset D. This dataset
(Parulian & Ludäscher, 2023) consists of texts in the philosophy of science, a snippet of
which is shown in Table 1. Each entry includes the title of the book, the author’s name,
and the year of publication. The task for Alice and Bob is to create a new column that
adheres to the APA style guidelines for in-text citations, i.e., which require the author’s
last name and the year of publication.

Table 1. Example dataset provided to Alice and Bob for cleaning (“␣” denotes a whitespace).

Book Title Author Date

Against Method 1975

Changing Order ␣␣1985 ␣

Exceeding Our Grasp

Feyerabend, P.

Collins, H.M.

Kyle Stanford 2006

Theory of Information 1992

For cleaning D, Alice and Bob employ several data cleaning operations from OpenRefine.
The subset of operations used by Alice and Bob is shown in Table 2, along with their
parameters. These include schema-level, row-level, and cell-level operations (Li et al.,
2021). Note that the split_col operation in OpenRefine automatically creates new columns,
whereas the name of the new column created by the rename and join_col operations must
be explicitly given via the new_column_name parameter.

Alice and Bob each execute their own data cleaning recipe (i.e., a sequence of data
cleaning actions); see Table 3. Unfortunately, they arrive at distinct outcomes as can be
seen from the two different results in Table 4. While the two result datasets are similar,
there are also differences, e.g., in the Citation column. Moreover, Alice’s table contains
only three rows, in contrast to Bob’s four as in the initial dataset (Table 1). Additionally,

IJDC | Conference Paper

Yilin Xia

Yilin Xia et al. | 5

Table 2. Data cleaning operations used by Alice and Bob (and available, e.g., in OpenRefine).

Data Cleaning Operation Description

cell_edit(row_id, column_name, new_value) OpenRefine’s single cell edit function, allowing users to hover over
a cell and click “Edit” to modify its value.

del_row(row_id) Deletes a row by using the “Facet” feature, selecting a relevant con-
dition, followed by “Remove Matching Rows”.

del_col(column_name) Removes a column by going to “Edit Column” and selecting “Re-
move this Column”.

split_col(column_name, separator) Accessed via “Edit Column” > “Split into several columns”, this
function splits a column into multiple ones using a specified sep-
arator and keeps the original column.

transform(column_name, function) Found under “Edit cells” > “Transform...”, it allows the transform-
ation of column values using the General Refine Expression Lan-
guage (GREL).

join_col(set_of_column_names, separator, new_column_name) Combines multiple columns into a new one with a specific separator
via “Edit column” > “Join columns...”.

rename(column_name, new_column_name) Rename a column under “Edit column” > “Rename the column...”.

the columns differ: Alice’s version includes an “Author 1” column, while Bob’s version
separates the author information into “Last Name” and “First Name” columns.

The key idea of our approach, described in the following sections, is to model data
cleaning actions as arguments to perform the desired updates and then treat conflicting
actions (like those by Alice and Bob) as arguments that can attack one another, in the
sense of argumentation frameworks. By computing solutions (extensions) of the resulting
argumentation frameworks, different reconciliation solutions to the conflicting recipes can
be obtained automatically.

Table 3. Data cleaning recipes by Alice and Bob. Steps correspond to OpenRefine operations.

Step Alice’s Data Cleaning Steps Effects of the Data Cleaning Operations

E rename("Book Title", "Book-Title") Replace whitespace in column name with ‘-’ to simplify data manipulation

F cell_edit(3, "Author", "Stanford, P.") Edit cell value to make it consistent with the pattern from other cells

G transform("Date", "value.toNumber()") Data type conversion

H del_row(4) Remove a row with a missing cell value

I split_col("Author", ",") Extract the lastname from the “Author” column

J del_col("Author 2") Remove an unnecessary column

K join_col("Author 1", "Date", "," , "Citation") Create an in-text Citation column by combining two other columns

Step Bob’s Data Cleaning Steps Effects of the Data Cleaning Operations

L rename("Book Title", "Book_Title") Replace whitespace in column name with ‘_’ to simplify data manipulation

M transform("Date", "value.trim()") Trim whitespace characters in string value

N cell_edit(4, "Author", "Shannon, C.E.") Add missing information

O cell_edit(3, "Author", "Stanford, P.K.") Edit cell value to make it consistent with the pattern from other cells

P split_col("Author", ",") Extract the lastname from the “Author” column

Q rename("Author 1", "Last Name") Replace the column name with a more meaningful one

R rename("Author 2", "First Name") Replace the column name with a more meaningful one

S join_col("Last Name", "Date", "," , "Citation") Create an in-text Citation column by combining two other columns

IJDC | Conference Paper

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

6 | Reconciling Data Curation Conflicts: Transparency Through Argumentation

Table 4. Data cleaning results for Alice (top) and Bob (bottom). Values depicted in light green
have been converted to a numeric data type (all other columns have type string).

Book-Title Author Date Author 1 Citation

Against Method Feyerabend, P. 1975 Feyerabend Feyerabend, 1975

Changing Order Collins, H.M. 1985 Collins Collins, 1985

Exceeding Our Grasp Stanford, P. 2006 Stanford Stanford, 2006

Book_Title Author Date Last Name First Name Citation

Against Method Feyerabend, P. 1975 Feyerabend P. Feyerabend, 1975

Changing Order Collins, H.M. 1985 Collins H.M. Collins, 1985

Exceeding Our Grasp Stanford, P.K. 2006 Stanford P.K. Stanford, 2006

Theory of Information Shannon, C.E. 1992 Shannon C.E. Shannon, 1992

Modeling Data Cleaning Conflicts as Argumentation
Frameworks

The key idea of our approach is to treat data curation actions as arguments, i.e., a curator
claims that the corresponding operation is desirable or necessary for cleaning the data.
Conflicting operations A and B from two different recipes are then modeled as attacks.

Table 5. Operation Conflicts: This matrix illustrates one possible conflict (attack)
relationship between pairs of data operations A and B. For readability, the upper half of the matrix

is omitted (as it can be deduced from the lower half by reversing the attack relation).

Operation B
Operation A cell_edit(r , c, v2) del_row(r) del_col(c) split_col(c, sp2) transform(c, f2) join_col(c, ...cj , sp2, cn2) rename(c, c2)

A ↔ B
A → B ∅
A → B ∅ ∅
A ← B ∅ A ← B ∅
A ↔ B ∅ A ← B A → B A ↔ B
A ← B ∅ A ← B ∅ A ← B ∅

cell_edit(r , c, v1)
del_row(r)

del_col(c)

split_col(c, sp1)
transform(c, f1)
join_col(c, ...ci , sp1, cn1)
rename(c, c1) A → B ∅ A ↔ B A → B A → B A → B A ↔ B

For example, A ↔ B (mutual attack) means that A and B attack each other, so only
one of them should be executed. Consider, e.g., the actions cell_edit(r , c , v1) and
cell_edit(r , c , v2). They are considered a mutual attack whenever v1 ≠ v2: Both curators
agree that the cell in row r and column c need to be changed, but disagree on what the new
value should be. Thus cell_edit(r , c , v1) and cell_edit(r , c , v2) are attacking each other,
denoted cell_edit(r , c , v1) ↔ cell_edit(r , c , v2).

Conversely, A → B means that if A is accepted then B is rejected (but not vice versa).
For example, if a curator C1 wants to delete a row r and curator C2 wants to edit a cell-
value in r (so A = del_row(r) and B = cell_edit(r , c , v2)), we could argue that B should be
rejected, either because it works on a cell that has been deleted already, or it performs
an edit on a cell that is about to be deleted. Table 5 specifies that in such cases, deletions
take priority over edits.

Another asymmetric attack relations occurs, e.g., between operations transform(c , f1)
andsplit_col(c , sp2). First, note that these two operations are not commutative, i.e., the

IJDC | Conference Paper

Yilin Xia

Yilin Xia et al. | 7

Attacks Description

E↔ L rename("Book Title", "Book-Title") ↔ rename("Book Title", "Book_Title")
F ↔ O cell_edit(3, "Author", "Stanford, P.") ↔ cell_edit(3, "Author", "Stanford, P.K.")
J↔ R del_col("Author 2") ↔ rename("Author 2", "First Name")
G↔ M transform("Date", "value.toNumber()") ↔ transform("Date", "value.trim()")
K← Q join_col("Author 1", "Date", "," , "Citation") ← rename("Author 1", "Last Name")
H→ N del_row(4) → cell_edit(4, "Author", "Shannon, C.E.")
I← N, O split_col("Author", ",") ← cell_edit(4, "Author", "Shannon, C.E."), cell_edit(3, "Author", "Stanford, P.K.")
F→ P cell_edit(3, "Author", "Stanford, P.") → split_col("Author", ",")
K← M join_col("Author 1", "Date", "," , "Citation") ← transform("Date", "value.trim()")
G→ S transform("Date", "value.toNumber()") → join_col("Last Name", "Date", "," , "Citation")

(a) Abstract attack relations and description of underlying data cleaning operations (cf. Table 3)

H I

Q R

E

L

F

M P

G

N SO

J KAlice

Bob

(b) Argumentation Framework (solid edges) and recipe execution order (dashed edges)

Figure 2. Individual attack relations and visualized attack graph (with recipe execution order)

result depends on the execution order. Here, for simplicity, we argue that a data cleaning
transformation f1 on column c should take priority over a column-split operation on c.2

By modeling the conflicts between Alice’s and Bob’s recipes as specified in Table 5, we
obtain the attack relation described in Figure 2(a). Additionally, this attack relationship is
visualized in Figure 2(b). Note that mutual attacks are displayed using two attack edges
e.g., E → L and L → E. Operations by Alice are shown as ovals, those by Bob are
depicted as boxes. Dashed lines are not attack relations but represent the execution order of
operations within a curator’s recipe.

Solving AFs to Explain DC Conflicts

After modeling data-cleaning recipes as attack graphs, the corresponding grounded and
stable extensions can: (i) help users better understand the conflicts among the recipe
actions; and (ii) provide guidance on how to resolve the conflicts among a ctions to
generate one or more unified (i.e., m erged) r ecipes. In particular, given a solved attack
graph built from the recipes, we assume a merged recipe will contain the accepted actions
of the corresponding attack graphs (and will not include the rejected actions). Under
the grounded semantics, actions that are undecided (i.e., neither accepted nor rejected),
require further analysis by users for inclusion in the merged recipe. The stable-model

2 Instead of rejecting the column-split operation, it might be preferable to impose an execution order, i.e.,
first execute f1 and then split column c.

IJDC | Conference Paper

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

8 | Reconciling Data Curation Conflicts: Transparency Through Argumentation

semantics can then be employed to enumerate the possibilities for inclusion of the
remaining (undecided) actions. Specifically, after viewing the different stable extensions,
a user could select the one that they deem to be most appropriate for resolving the
remaining conflicts, adding the corresponding accepted actions to create a final, merged
recipe.

As an example, Figure 3 shows the solved attack graphs of Figure 2 under the
grounded semantics, where actions H and Q are accepted, N and K are rejected, and the
remaining actions are undecided. Alice’s action H (deletion of row 4) is accepted because
there is no other action that attacks it. Because H is accepted and attacks N , it follows
that Bob’s action N (to edit row 4) is rejected. Similarly, Bob’s action Q (to rename
column “Author 1”) is accepted because there is no other action that attacks it. Because
Q is accepted and attacks K, it follows that Alice’s action K (which required “Author 1”
for a join operation) is rejected. Note, however, that this still leaves the remaining actions
of Figure 3 unresolved.

H Q

K

M

N E

L

P

F G

S

O

I

J

R

Figure 3. The grounded extension of Figure 2 where (blue) actions are accepted, (orange) actions
are rejected, and (yellow) actions are undecided.

To help resolve the remaining conflicts, the stable models can be computed (of which
there are 16 distinct solutions), one of which is shown in Figure 4(a). As shown in the
figure, t he s table model proposes t o accept Alice’s a ctions E a nd J a long with Bob’s
actions M , O, P , and S. Figure 4(b) shows the same stable model as in Figure 4(a) but
displayed according to Alice’s and Bob’s order of actions in their respective data-cleaning
recipes.

Assuming that the stable model of Figure 4 is selected as the best resolution of the
conflicting actions in Alice’s and Bob’s recipes, a corresponding merged recipe is shown
in Table 6. The merged recipe adheres to the order of actions in the respective recipes
of Alice and Bob: E d H d J (from Alice) and M d O d P d Q d S (from
Bob). Note that the specific ordering shown in Table 6 is not the only possible ordering
of the actions. However, both the relative ordering of Alice’s and Bob’s recipe must
be maintained as well as an overall ordering that generates an appropriate final data
product. Specifically, in the running example, the objective is to generate a column that
incorporates APA in-text citations, which in this case means that Bob’s action S must
be the final step of the merged r ecipe. Moreover, there can exist additional order-based
dependencies among accepted actions from different data c urators. As an example, in
Table 6, Bob’s action P must occur before Alice’s action J since P splits the “Author”
column and J removes “Author 2”(generated by the split).

IJDC | Conference Paper

Yilin Xia

Yilin Xia

Angus Whyte
Highlight

Yilin Xia et al. | 9

H Q

K

M

N E

L

P

F G

S

O

I

J

R

(a)One of the 16 possible stable solutions

H I

Q R

K

M N O

E

L

F

P

G

S

JAlice

Bob

(b) The stable solution in sequence order according to the original recipes of Alice and Bob

Figure 4. A stable extension of Figure 3 with actions appearing in light blue being additionally
accepted and those appearing light orange additionally being rejected.

Table 6. One possible recipe when merging Alice and Bob’s Actions.

Argument Action Data Curator

E rename("Book Title", "Book-Title") Alice

M transform("Date", "value.trim()") Bob

H del_row(4) Alice

O cell_edit(3, "Author", "Stanford, P.K.") Bob

P split_col("Author", ",") Bob

J del_col("Author 2") Alice

Q rename("Author 1", "Last Name") Bob

S join_col("Last Name", "Date", "," , "Citation") Bob

Table 7. The result of the merged recipe in Table 6 on the intial dataset in Table 1.

Book-Title Author Date Last Name Citation

Against Method Feyerabend, P. 1975 Feyerabend Feyerabend, 1975

Changing Order Collins, H.M. 1985 Collins Collins, 1985

Exceeding Our Grasp Stanford, P.K. 2006 Stanford Stanford, 2006

Finally, the result of applying the actions of the merged recipe in Table 6 over the
initial dataset of Table 1 using OpenRefine is shown in Table 7.

IJDC | Conference Paper

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

Yilin Xia

10 | Reconciling Data Curation Conflicts: Transparency Through Argumentation

Discussion & Future Work

The process of cleaning large and complex data sets can be time intensive and can
require the work of multiple experts. However, conflicts c an naturally a rise i n such
collaborative data curation settings where multiple experts work independently on the
same or overlapping regions of a dataset. This paper describes an approach based on
formal argumentation frameworks for modeling the actions of users’ data-cleaning recipes,
identifying conflicting actions across recipes, and providing users with new tools to help
resolve these conflicts to generate a single, unified, merged re cipe. The recipe can then
be used over the original dataset to produce the final cleaned data p roduct. By leveraging
the grounded semantics of formal argumentation frameworks, it is possible to identify an
initial set of accepted and rejected actions. When ambiguity is still present, the remaining
actions can be resolved by selecting among one of the potentially many stable extensions.
While the use of argumentation frameworks has been employed previously for resolving
the justifications for specific data-cleaning actions (see Santos & Galhardas, 2011), our
work focuses on leveraging (and ultimately extending) systems such as OpenRefine,
that provide a wide-range of data cleaning actions, to create new tooling for reasoning,
visualizing, and automatically generating merged data-cleaning recipes. In this paper,
we have described the underlying approach through a concrete data-cleaning example,
highlighting the general idea and advantages of such tools. Finally, we have begun
developing open-source software and corresponding Jupyter notebooks that demonstrate
the practicality of the approach (Xia & Ludäscher, 2023). In future work we plan to
develop a full-featured toolkit for conflict resolution that can be used within OpenRefine
to support collaborate data cleaning projects.

References

Baroni, P., Gabbay, D., Giacomin, M., & Torre, L. v. d. (2018). Handbook of Formal
Argumentation. London, England: College Publications.

Dasu, T., & Johnson, T. (2003). Exploratory data mining and data cleaning. John
Wiley & Sons.

Dung, P. M. (1995). On the Acceptability of Arguments and Its Fundamental
Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games. AI,
77(2), 321–357.

Gelfond, M., & Lifschitz, V. (1988). The stable model semantics for logic
programming. ICLP/SLP, 88, 1070–1080.

Kandel, S., Paepcke, A., Hellerstein, J., & Heer, J. (2011). Wrangler: Interactive
visual specification of data transformation scripts. Proceedings of the sigchi conference
on human factors in computing systems, 3363–3372.

Li, L., Ludäscher, B., & Zhang, Q. (2019). Towards more transparent, reprodu-
cible, and reusable data cleaning with openrefine. iConference 2019 Proceedings.

IJDC | Conference Paper

https://philpapers.org/rec/BARHOF
https://philpapers.org/rec/BARHOF
https://www.sciencedirect.com/science/article/pii/000437029400041X
https://www.sciencedirect.com/science/article/pii/000437029400041X
Yilin Xia

Yilin Xia et al. | 11

Li, L., Parulian, N. N., & Ludäscher, B. (2021). Automatic Module Detection
in Data Cleaning Workflows: Enabling Transparency and Recipe Reuse [https:
//doi.org/10.2218/ijdc.v16i1.771]. 16th International Digital Curation Conference
(IDCC). doi:10.5281/zenodo.5606219.

Ludäscher, B., Bowers, S., & Xia, Y. (2023). Games, queries, and argumentation
frameworks: Towards a family reunion [Accepted for publication]. 7th Workshop
on Advances in Argumentation in Artificial Intelligence (AI3).

Parulian, N. (2022, June). Conceptual Model and Framework for Collaborative Data
Cleaning. https://zenodo.org/records/6781134.

Parulian, N., & Ludäscher, B. (2022). DCM Explorer: A tool to support
transparent data cleaning through provenance exploration. 14th Intl. Workshop on
the Theory and Practice of Provenance (TaPP), 1–6.

Parulian, N., & Ludäscher, B. (2023). Trust the process: Analyzing prospective
provenance for data cleaning. Companion Proceedings of the ACM Web Conference
2023, 1513–1523.

Santos, E., & Galhardas, H. (2011). Using Argumentation to Support the User
Involvement In Data Cleaning. 9th International Workshop on Quality in Databases
(QDB). http://qdb2011.dia.uniroma3.it/participants/program/index.html

Van Gelder, A., Ross, K. A., & Schlipf, J. S. (1991). The Well-founded Semantics

for General Logic Programs. Journal of the ACM, 38(3), 619–649.

Verborgh, R., & De Wilde, M. (2013). Using OpenRefine. Packt Publishing Ltd.[article]

Wickham, H. (2014). Tidy data. Journal of Statistical Software, 059. Retrieved

January 24, 2018, from https://doi.org/10.18637/jss.v059.i10

Xia, Y., & Ludäscher, B. (2023, August). Games and argumentation demo
repository [github.com/idaks/Games-and-Argumentation/tree/idcc].

IJDC | Conference Paper

https://doi.org/10.2218/ijdc.v16i1.771
https://doi.org/10.2218/ijdc.v16i1.771
https://doi.org/10.5281/zenodo.5606219
https://zenodo.org/records/6781134
http://qdb2011.dia.uniroma3.it/participants/program/index.html
http://doi.acm.org/10.1145/116825.116838
http://doi.acm.org/10.1145/116825.116838
https://doi.org/10.18637/jss.v059.i10
https://github.com/idaks/Games-and-Argumentation/tree/idcc

	Introduction
	Background & Preliminaries
	A Running Example for Data Cleaning
	Modeling Data Cleaning Conflicts as Argumentation Frameworks
	Solving AFs to Explain DC Conflicts
	Discussion & Future Work
	References

