
The eXensible Aceess Method (XAM) Standard 107

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

The eXtensible Access Method (XAM) Standard

Steve Todd,
Distinguished Engineer,

EMC Corporation,
Hopkinton, Massachusetts, USA

 Abstract
Recent developments in the storage industry have resulted in the creation of an industry standard
application programmer’s interface (API) known as XAM, the eXtensible Access Method. The
XAM API focuses on the creation and management of reference information (otherwise known as
fixed content). Storage vendors supporting the XAM API will provide new benefits to applications
that are creating and managing large amounts of fixed content. The benefits described by this paper
merit consideration and research by developers creating applications for digital curators1.

1 This paper is based on the paper given by the author at the 4th International Digital Curation
Conference, December 2008; received July 2008, published October 2009.
The International Journal of Digital Curation is an international journal committed to scholarly excellence and
dedicated to the advancement of digital curation across a wide range of sectors. ISSN: 1746-8256 The IJDC is
published by UKOLN at the University of Bath and is a publication of the Digital Curation Centre.

http://creativecommons.org/licenses/by-nc-sa/2.0/uk/

108 The eXensible Aceess Method (XAM) Standard

Introducing the XAM Initiative
In 2004 a small group of mass storage device vendors gathered to discuss the

growing importance of storing “fixed content”. Fixed content is information that once
written does not change (or is changed infrequently). This small group grew to include
two more types of interested party: application vendors and end-users.

A very specific set of needs was generated:
• The needs of application vendors to annotate fixed content, indicate

storage policies for fixed content, and manage enormous amounts of
individual pieces of fixed content.

• The needs of end-users to select from a variety of fixed content
applications and storage vendors, perform fixed content migration between
different application and storage vendors, and comply with local, national,
and international regulations.

• The needs of storage vendors to comply with fixed content regulations,
efficiently store large amounts of fixed content (and associated metadata),
and support the large range of applications that generate fixed content.

In December 2005 the Storage Networking Industry Association (SNIA) created
the XAM Initiative to address these needs. The members of SNIA are “dedicated to
developing and promoting standards, technologies, and educational services to
empower organizations in the management of information”2. The XAM initiative
brought together a variety of application vendors, end-users, members of academia,
and storage vendors. As a result of this activity it has recently been announced (SNIA,
2008) that a specification for a standard fixed content API is close to approval (XAM
specification 1.0), and conformant software developer kits are nearing release. The
XAM specification will also be submitted for consideration as an ANSI/ISO standard.

XAM is based upon the time-tested and proven methods of commercial solutions
that are already available in the marketplace. These solutions are migrating from their
own proprietary APIs towards the XAM industry standard. XAM is also designed with
long-term retention in mind. SNIA’s 100 Year Archive Task Force3 believes that both
the OAIS and XAM standards can assist with the “grand technical challenges” of long-
term digital information retention, that is, logical and physical migration (SNIA,
2007).

The availability of a software development kit (SDK) for XAM means that
application developers can write new applications specifically designed for fixed
content. Digital curation software falls into this category; this paper is an introduction
and a call to research.

One of the goals of the XAM API is to become as ubiquitous (Todd, 2006) to
application developers as the file system API.

2 Storage Networking Industry Association about page http://www.snia.org/about
3 SNIA 100 Year Archive Task Force http://www.snia.org/forums/dmf/programs/ltacsi/100_year/

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

http://www.snia.org/about
http://www.snia.org/forums/dmf/programs/ltacsi/100_year/

Steve Todd 109

XAM History and Motivation
In 2002 EMC Corporation introduced a storage system specifically designed for

the storage and retrieval of fixed content. The Centera storage system differs from
traditional block and file storage systems in several ways.

• An object interface is presented to applications as opposed to a block
storage or file storage interface.

• Content cannot be stored to the system without accompanying metadata.
• Overwriting content is not permitted.
• All content and associated metadata are both protected and retrieved using

hash values known as content addresses. Successful retrieval of content
implies that the content and metadata are original and authentic.

• The system presents a flat address space, which obviates the need for
configuring front-end file systems or logical units (LUNs). Neither does
adding new capacity to store additional objects require manual
configuration; new disks are automatically assimilated into the general
object pool.

In 2002 there were no widely supported standards for communicating with object
addressable storage systems. Block storage systems, on the other hand, benefited from
the SCSI (Small Computer System Interface) protocol, while file storage systems
benefited from the CIFS (Common Internet File System) and NFS (Network File
System) protocols. This lack of standards occasioned the creation of a proprietary
application programmer’s interface and a software library known as the Centera SDK.
Many application vendors4 integrated the Centera API into their software offerings.
These software offerings included fixed content products such as medical imaging and
email archiving.

EMC reasoned that Centera would benefit from the creation of an object-based
standard. In 2004 EMC joined forces with IBM and began working on a specification
for a programmer’s interface for fixed content storage devices. In 2005 several other
vendors joined the effort, including Hewlett-Packard, Hitachi, and SUN. A joint
proposal was made (XAM Version 1.1) to certain software vendors. In late 2005,
XAM Version 1.2 was proposed to SNIA. The Fixed Content Aware Storage
Technical Working Group (FCASTWG) was formed with the goal of creating and
ratifying a formal XAM interface (Casten & Horgan, 2007). In October 2007 the first
multi-vendor demonstration of XAM technology took place (Mearian, 2007), and in
the summer of 2008 the first versions of shipping code became available (Conry-
Murray, 2008).

The first version of the XAM API provides the basic methods for storing,
retrieving, and searching fixed content. It also provides support for storage system
policies, such as the retention of fixed content, and the electronic shredding of content.
More specific details about XAM API implementations and functionality are described
in subsequent sections.

In addition to providing API documentation for both the C and Java programming
languages, SNIA has provided an architecture document which describes the software

4 Application integrated with Centera: EMC Centera Proven Program for ISVs
http://www.emc.com/partners/velocity/isv/isv-cas-specialty/centera-proven-program-for-isvs.htm

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

http://www.emc.com/partners/velocity/isv/isv-cas-specialty/centera-proven-program-for-isvs.htm

110 The eXensible Aceess Method (XAM) Standard

architecture for XAM. The following diagram has been extracted from the architecture
document and inserted here in order to provide more detail about the XAM software
architecture.

Figure 1. XAM software architecture.

Applications are developed using the standard XAM function calls provided by
the XAM library. XAM toolkits can also be built on top of this library. Underneath the
XAM library are vendor implementation modules (VIMs). The purpose of a VIM is to
translate the standard XAM API calls into the protocol of the underlying storage
system. XAM, therefore, is not a protocol to an object-based storage system, but,
rather, a function call interface that can be mapped onto storage systems provided by a
variety of vendors.

Applications that program to the XAM API can realize the following benefits:
• They no longer need to manage the association of disparate files

and/or database entries. XAM acts as a “paper clip” that
automatically joins together multiple pieces of content and
metadata in an inseparable fashion.

• They can specify all content as “binding” (defined below) and
guarantee that the content cannot be modified, and ensure upon
retrieval that the content is original and authentic.

• They can specify content as “non-deletable” via XAM’s
retention period feature.

• They can migrate content between different (or the same)
vendor storage systems. This becomes especially important for
events such as technology refresh or lease rollover.

• They no longer have to target a specific database or file system
when storing content.

Vendor storage systems that support the XAM API are known in XAM as
XSystems. The API for communicating with XSystems is described below.

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

Steve Todd 111

The XAM API
The main functional goal of the XAM API is to provide applications with the

ability to unite fixed content with relevant metadata, associate this union with a fixed
identifier, and then store all of the content on a mass storage device. The most
important abstraction that XAM provides is known as an XSet. An XSet logically
“contains” the union of fixed content and metadata. The identifier associated with an
XSet is known as a XUID (a globally unique name). The mass storage devices that
support XSets and XUIDs are known as XSystems.

XSets
An XSet represents the actual fixed content being managed on an XSystem

(defined below). An XSet can contain zero or more pieces of data (e.g., a scanned
image), zero or more pieces of metadata (e.g., information about a scanned image), and
a variable number of fields (e.g., name/value pairs).

The ability to store content and metadata in one logical XSet construct raises the
potential for using the XAM standard as an implementation choice for an OAIS
Archival Information Package (AIP) (Consultative Committee for Space Data Systems
[CCSDS], 2002). An XSet can store the content (Data Object), and multiple pieces of
metadata describing that object (e.g., Representation Information and Preservation
Description Information). The AIP can be represented and retrieved as one solitary
unit, as opposed to, for example, a collection of files stored in a common directory.
See the section An XAM Example for more detail on implementing an AIP.

XSets also allow for the application of policies on the content contained therein.
For example, the XAM specification currently supports the ability to specify retention
policies on XSETs (e.g., disallow delete for 3 years). Policy support is dependent on
the capabilities of the underlying XSystem. Any policy specific to digital curation can
be proposed to the SNIA as a new standard. Potential new XAM digital preservation
policies include quality control, disaster recovery, and security (Electronic Research
Preservation and Access Network [ERPANET], 2003).

Properties, XStreams and Fields
An XSet property is a name/value pair. Properties contain simple values such as

strings or integers. An application can add zero or more properties to an XSet.

An XStream is an arbitrarily large binary data stream such as a JPEG file, XML
file, or other data set. An application can add zero or more XStreams to an XSet.

A XAM field is the name given to a property or an XStream. XAM allows
applications to iterate over fields in an XSet and get/set values.

XSets are populated with properties and/or XStreams, and then “committed” to an
XSystem.

XSystems
An XSystem is defined as a mass storage device that supports the XAM standard.

XSystems represent an opportunity to research a new data storage access method.
Current data storage research, for example, includes the CASTOR (CERN Advanced

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

112 The eXensible Aceess Method (XAM) Standard

STORage manager) effort occuring at CERN5, the High Performance Storage System
effort6, and the OceanStore Project7. The mass storage interfaces discussed in these
efforts include both file system and object-based interfaces; the XAM API is purely an
object-based interface to a mass storage device.

XUIDs
A XUID is the “claim check” that allows an application to retrieve an XSet from

an XSystem. When an XSet is stored to an XSystem, the XSystem generates a unique
XUID representing that XSet and returns it to the application. The XUID is an opaque
string of characters.

XUID creation can be influenced through XAM’s concept of “binding”. Any
element placed as a field within an XSet (e.g., an XStream or a property) can be
labeled as binding. Labeling fields of an XSet as binding results in a hash of those
fields. The results of the hash are represented within the XUID. Identical XSets stored
to an XSystem may result in the exact same XUID, which offers the potential of
solving the problem of structured collisions8 across repositories.

An XUID is essentially a new form of Persistent Identifier (PI)9. A XUID has
characteristics that differentiate it from traditional PIs:

• It is created by the XAM storage system and not the application.
• It cannot be “renamed”.
• It cannot be “moved” by giving it a different “pathname”. XUIDs are

location independent and do not have absolute pathname contexts.
• The form of a XUID is in part governed by the content within the XSet

represented by the XUID. Modification of said XSet can either leave the
XUID unchanged or result in a new XUID; this choice is up to the
application. New XUID creation does not automatically remove the old
XUID; the original XSet remains intact upon the XSystem.

An XAM Example
It has been posited that the XAM API would be a useful way to represent an

OAIS archival information package. Consider the following depiction of a scanned
document from the archives of United States President John F. Kennedy. Assume that
the scanned document has resulted in a file named “PersonalMemo.jpg” and will
become the “Data Object” within the AIP. The digital curator has created two
additional XML files that are associated with the scanned image (Figure 2). These files
represent AIP Representation Information (how to interpret the Data Object) and AIP
Preservation Description Information (metadata about the Data Object). These files
represent a submission into an archive. Clearly this submission is lacking in
completeness and detail; the reader is encouraged to focus instead on how the elements
of an AIP could be stored as an XSet and “remembered” via an XUID.

5 CERN Advanced Storage Manager http://castor.web.cern.ch/castor/
6 High Performance Storage System (HPSS) http://www.hpss-collaboration.org/hpss/
7 The OceanStore Project Overview http://oceanstore.cs.berkeley.edu/info/overview.html
8 An Introduction to CORDRA (Content Object Discovery and Registration/Resolution Architecture).
http://cordra.net/introduction/
9 Persistent Identifiers http://www.persistent-identifier.de/?lang=en

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

http://www.persistent-identifier.de/
http://cordra.net/introduction/
http://oceanstore.cs.berkeley.edu/info/overview.html
http://www.hpss-collaboration.org/hpss/
http://castor.web.cern.ch/castor/

Steve Todd 113

Figure 2. Scanned document with associated XML files.

The following code fragment describes how these three pieces of information are
added into an XSet and stored onto an XSystem. For the sake of brevity this example
lacks completeness and ignores error handling.

Figure 3. Code fragment creating an XSet and locating in the XSystem.

The final line of this code fragment represents the “ingest” process of the OAIS
functional model. A set of disjoint files are being submitted into a repository as one
unified archival information package (an XSet). The XSet is submitted to the archive
(via the commit() method), and a unique, persistent identifier is being returned
(myXUID). This XUID, in the case of EMC Centera, is a cryptographic hash of all the
content within the XSet, and therefore unique (within the limits of cryptographic hash
algorithms such as SHA). Note that the use of a cryptographic hash may be
implemented by some vendors but not by all. The XUID becomes the “handle” or
“persistent identifier” by which applications retrieve the AIP.

By default, the data within this AIP are immutable; any changes to the content
therein will result in a new XUID, and the old one is preserved. Additionally, a
successful “read” of this XUID can automatically check the authenticity and originality
of the AIP (e.g., Centera VIM verifies cryptographic hash during retrieval).

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

XSystem sxSystem;
XSet sXSet;
XStream DO;
XStream RI;
XStream PDI;
XUID myXUID;

..

// create an XSET

sXSet = sxSystem.createXSet(XSet.MODE_UNRESTRICTED);

// create XStream objects within the new XSET

DO = sXSet.createXStream(“DO”,true, “image/jpeg”);
RI = sXSet.createXStream(“RI”,true, “text/xml”);
PDI = sXSet.createXStream(“PDI”,true, “text/xml”);

// call a utility routine that loads file content into each XStream

Load_file_into_XStream(DO, “/home/jfk/PersonalMemo.jpg”);
Load_file_into_XStream(RI, “/home/jfk/RI.xml”);
Load_file_into_XStream(PDI, “/home/jfk/PDI.xml”);

Directory = /home/jfk

PersonalMem o.jpg

 RI.xm l
PDI.xm l

114 The eXensible Aceess Method (XAM) Standard

The use of XUIDs is a unique opportunity for digital curators. It is an opaque
string of alphanumerics that is neither a filename nor a database entry. It serves as a
“paper clip” that can glue together the disparate pieces of content that often make up
an AIP. This example does not describe any of the policies that can be assigned to
XSets, such as the capacity of an application to specify a retention period (e.g., keep
this content forever).

XAM Implementation Use Case
The first version of the XAM standard has been approved, and working code is

available. SNIA is currently working on the release of a “reference VIM”. A reference
VIM would allow for the development of XAM applications without the need for
direct communication with a particular vendor’s XSystem.

In order to highlight the fact that the XAM standard is “shipping code”, the
following table describes an XSystem manufactured by EMC (Centera), and comments
on the functionality provided by EMC’s currently shipping XAM SDK.

SNIA XAM Feature EMC’s VIM and Centera
XSystem Support supported
Create, Read, Write, Delete XSets supported
Retention supported
Electronic Shredding supported
Checksum validation of binding fields & XStreams supported
Non-binding fields and XStreams supported
Metadata addition/extraction supported
Level 1 Metadata Query supported
Level 2 XStream Query Not currently supported in EMC VIM 1.0.

Table 1. Functionality available in EMC’s XAM SDK.

EMC’s Centera product possesses a variety of features that are not addressed by
the first version of SNIA’s XAM standard. These features are detailed below.

Replication
The Centera system supports the replication of XSets to a remote Centera system.

XSet-based Protection
The Centera system protects XSets using either a CPM approach (Content

Protection Mirroring) or a CPP approach (6+1 Content Protection Parity).

Background Validation
The Centera system supports the automated validation of XSets. Background

processes running inside of Centera systematically scan and open XSETs and compare
the archived data to the hash value embedded within the XUID. Corrupt XSETs are
automatically repaired using the CPM or CPP redundancy.

Scalability
While the XAM specification places no limits on the number of XSets that an

XSystem can hold, Centera is currently scalable up to 25 million objects per disk
(EMC Corporation, 2008) with the smallest Centera system containing 16 disks.

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

Steve Todd 115

Audits of Deleted Content
The Centera system supports audited reports of deleted XSets.

XAM and Digital Curation Research
Given this brief description of XAM, it is the assertion of this paper that XAM

contains numerous value propositions that are directly applicable to the challenges of
digital curation. Potential areas of research are enumerated below.

The Unity of Content and Metadata
When a piece of content is placed into an XSET, and its associated metadata are

added to it, and the entire XSET is subsequently stored onto an XSystem, the metadata
and content become inseparable. It is not necessary to place metadata into a separate
database or file; with XAM these items always travel together. This may reduce the
burden on applications to manage the storage and retrieval of metadata as an entity
separate from content.

A Unique, Persistent, Tamper-proof Identifier
The unique naming and persistent storage of XUIDs by an XSystem is mandated

by XAM. The burden of creating (and remembering) unique identifiers has shifted to
the storage system. By specifying the “binding” form of XUID creation, applications
can guarantee the authenticity of the content being retrieved via the XAM API.

Simplified Capacity Upgrades
Adding capacity to a digital archive is an experience which can require extensive

training in storage technologies. There is nothing within the XAM standard which
makes capacity upgrade of an XSystem inherently easier. However, XSystems present
a flat address space for storing content (as opposed to presenting a file system). This
provides a storage vendor with an opportunity to hide the configuration details of file
systems, databases, and raw storage. Properly designed XSystems can consume raw
storage “on-the-fly” without extensive end-user involvement.

File System and Database Management
Digital archives that present file system and/or database interfaces require

ongoing maintenance of those interfaces. Administrators must learn the details of the
management tasks for those interfaces. Current solutions often involve different types
of databases (Oracle, SQL) and different types of file systems (NFS, CIFS). Each
interface requires their learning a different set of management tools.

The XAM standard offers the possibility of eliminating the need for a database by
using the XAM API to query metadata and fixed content. The location-independent
nature of XAM does not require an externally visible file system.

Storage Vendor Neutrality and Migration
The selection of a storage vendor’s product as the centerpiece of a digital archive

is a critical decision. The promise of the XAM API is that XSETs are portable between
storage systems. This provides a “second source” for the storage vendor selection (as
opposed to “vendor lock-in”).

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

116 The eXensible Aceess Method (XAM) Standard

There are several different reasons for replacing a storage vendor’s product,
including cost, power utilization, performance, quality, and technology refresh (e.g., a
migration to the same vendor with larger capacity configurations). The XAM
specification guarantees the portability of XSets between XSystems, which also
includes continual use of the exact same XUIDs.

SNIA has fully addressed this issue through the inclusion of XSet import and
export function calls. The XSet.Export() routine retrieves an XSet from a vendor’s
XSystem and stores it in a canonical form; XSet.Import() creates an XSet on a
different XSystem using this canonical form. The XUID is preserved throughout this
operation.

Flexible XSet Creation
XSets can contain multiple numbers and combinations of content, metadata and

fields. XSets can also be layered, and embedded XUIDs can point to other XSets. This
supports the creation of XSets that adhere to system models like the Open Archival
Information Systems (OAIS) Reference Model.

One of the foundational elements of the OAIS model is the Archival Information
Packet (AIP). The AIP is made up of many different “sub-elements”, including
package descriptions, packaging information, content information and preservation
description information (CCSDS, 2002). The flexible XSet model allows for all of this
information to be inserted into one XSet, or each sub-element can be stored as its own
XUID and referenced by a parent AIP XSet.

Regardless of the implementation, an archival information package can be
represented with one globally unique persistent identifier. XAM binding techniques
can also be used to conclusively prove that the AIP is authentic.

TRAC Assessment
An XSystem, as defined by SNIA, would appear to be a trustworthy repository. In

order to validate this assertion it would be worthwhile to validate shipping XSystems
(e.g., Centera) by using the Trustworthy Repository Audit & Certification (TRAC)
checklist (Center for Research Libraries [CRL]/Online Computer Library Center
[OCLC], 2008).

Xsystem Administration and Policies
The XAM Standard has not addressed the standardization of administrative

functions and system policies for XSystems. The requirements for standard
management tools for digital archives should be communicated to SNIA for
consideration in future versions of XAM.

Conclusions
The XAM API contains many features that are attractive to developers of digital

curation software. The XAM specification itself is the attraction; implementations by
mass storage vendors are just beginning. Knowledge of the XAM API at this stage of
its lifecycle offers the opportunity for digital curation researchers to begin visualizing
and building tools and applications that utilize the standard.

The overlap of XAM and current digital curation research is large:

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

Steve Todd 117

• Persistent identifiers
• The unity of metadata and content
• Structured collision resolution
• Applying policy to content
• Mass storage accessibility

Becoming proficient with the XAM API is a matter of weeks (if not days) for
experienced programmers familiar with the C and/or Java programming languages.
Engagement with the SNIA XAM community can be accomplished via the SNIA
XAM Initiative website10.

Finally, it is worth mentioning that the XAM standard will be evolving, and input
from users (such as digital curators) is valued and welcomed by SNIA.

Acknowledgements
Many thanks to Gil Press, David Black, Mike Horgan, Graham Stuart and Wayne

Adams (all of EMC), for their assistance with this paper. The full list of organizations
currently involved in the XAM Initiative can be found on the SNIA website11.

References
Casten, C. & Horgan, M. (2007, September). eXtensible Access Method (XAM): A

technical tutorial. Slide 7. Presentation at Storage Networking Industry
Association Storage Developer Conference, September 10-13, 2007, San José,
CA. Retrieved October 7, 2008, from
http://www.snia.org/forums/xam/resources/XAM_eXtensible_Access_Method_Technical_Tutorial.pdf

Center for Research Libraries/Online Computer Library Center. (2008). Trustworthy
repositories audit & certification (TRAC): Criteria and checklist. Version 1.0,
February 2007. Retrieved November 10, 2008, from
http://www.crl.edu/PDF/trac.pdf

Conry-Murray, A. (2008, August 9). XAM Standard Plans For The Future Of Storage:
Standard accommodates variety of media, helping enterprises manage long-
term retention. In InformationWeek. Retrieved September 17, 2009, from http://
www.informationweek.com/news/storage/showArticle.jhtml?articleID=209903838

Consultative Committee for Space Data Systems. (2002). Reference Model for an open
archival information system (OAIS). January, 2002. Retrieved June 18, 2008,
from http://public.ccsds.org/publications/archive/650x0b1.pdf

EMC Corporation. (2008, March 13). EMC Expands Centera Archiving Capabilities to
Address “Exploding Digital Universe”. EMC: Hopkinton, MA. Retrieved
September 17, 2009, from
http://www.emc.com/about/news/press/2008/20080313-01.htm

10 SNIA XAM Initiative: XAM Mission and Goals http://www.snia.org/forums/xam
11 SNIA membership directory http://www.snia.org/member_com/member_directory/

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

http://www.emc.com/about/news/press/2008/20080313-01.htm
http://public.ccsds.org/publications/archive/650x0b1.pdf
http://www.informationweek.com/news/storage/showArticle.jhtml?articleID=209903838
http://www.informationweek.com/news/storage/showArticle.jhtml?articleID=209903838
http://www.crl.edu/PDF/trac.pdf
http://www.snia.org/forums/xam/resources/XAM_eXtensible_Access_Method_Technical_Tutorial.pdf
http://www.snia.org/member_com/member_directory/
http://www.snia.org/forums/xam

118 The eXensible Aceess Method (XAM) Standard

Electronic Research Preservation and Access Network. (2003). Digital policy
preservation tool. ERPANET guidance document, September, 2003. Retrieved
July 1, 2008, from
http://www.erpanet.org/guidance/docs/ERPANETPolicyTool.pdf

Mearian, L. (2007, October 15). Universal data retention specification demonstrated:
XAM specification divorces data from the applications that created it. In
Computer World. Retrieved October 7, 2008, from
http://www.computerworld.com/action/article.do?
command=viewArticleBasic&taxonomyName=storage&articleId=9042678&taxonom
yId=19&intsrc=kc_top

Storage Networking Industry Association. (2007). 100 year archive requirements
survey. Retrieved July 2, 2008, from
http://www.snia.org/forums/dmf/programs/ltacsi/forums/dmf/programs/ltacsi/100_year/100YrATF_Archive-Requirements-Survey_20070619.pdf

Storage Networking Industry Association. (2008, April 7). SNIA XAM specification
boosted by software development efforts; Nears public release. SNIA press
release. Retrieved June 18, 2008, from http://www.snia.org/about/news/newsroom/pr/view?
item_key=8fab3d77eba14d8e795a5bb4c4fe78b2ea339f3e

Todd, S. J. (2006). Comparing the XAM API with file system programming. Master’s
Thesis, Computer Science Department of the University of New Hampshire,
December, 2006. Retrieved June 18, 2008, from
http://cs.unh.edu/ToddThesis.pdf.

The International Journal of Digital Curation
Issue 2, Volume 4 | 2009

http://cs.unh.edu/ToddThesis.pdf
http://www.snia.org/forums/xam/news/
http://www.snia.org/forums/xam/news/
http://www.snia.org/forums/dmf/programs/ltacsi/forums/dmf/programs/ltacsi/100_year/100YrATF_Archive-Requirements-Survey_20070619.pdf
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyName=storage&articleId=9042678&taxonomyId=19&intsrc=kc_top
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyName=storage&articleId=9042678&taxonomyId=19&intsrc=kc_top
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyName=storage&articleId=9042678&taxonomyId=19&intsrc=kc_top
http://www.erpanet.org/guidance/docs/ERPANETPolicyTool.pdf

	 Abstract
	Introducing the XAM Initiative
	XAM History and Motivation
	The XAM API
	XSets
	Properties, XStreams and Fields
	XSystems
	XUIDs

	An XAM Example
	XAM Implementation Use Case
	Replication
	XSet-based Protection
	Background Validation
	Scalability
	Audits of Deleted Content

	XAM and Digital Curation Research
	The Unity of Content and Metadata
	A Unique, Persistent, Tamper-proof Identifier
	Simplified Capacity Upgrades
	File System and Database Management
	Storage Vendor Neutrality and Migration
	Flexible XSet Creation
	TRAC Assessment
	Xsystem Administration and Policies

	Conclusions
	Acknowledgements
	References

