Automatic Module Detection in Data Cleaning Workflows: Enabling Transparency and Recipe Reuse
DOI:
https://doi.org/10.2218/ijdc.v16i1.771Abstract
Before data from multiple sources can be analyzed, data cleaning workflows (“recipes”) usually need to be employed to improve data quality. We identify a number of technical problems that make application of FAIR principles to data cleaning recipes challenging. We then demonstrate how transparency and reusability of recipes can be improved by analyzing dataflow dependencies within recipes. In particular column-level dependencies can be used to automatically detect independent subworkflows, which then can be reused individually as data cleaning modules. We have prototypically implemented this approach as part of an ongoing project to develop open-source companion tools for OpenRefine.
Keywords: Data Cleaning, Provenance, Workflow Analysis
Downloads
Published
Issue
Section
License
Copyright for papers and articles published in this journal is retained by the authors, with first publication rights granted to the University of Edinburgh. It is a condition of publication that authors license their paper or article under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.