Reconciling Conflicting Data Curation Actions: Transparency Through Argumentation
DOI:
https://doi.org/10.2218/ijdc.v18i1.943Abstract
We propose a new approach for modeling and reconciling conflicting data cleaning actions. Such conflicts arise naturally in collaborative data curation settings where multiple experts work independently and then aim to put their efforts together to improve and accelerate data cleaning. The key idea of our approach is to model conflicting updates as a formal argumentation framework (AF). Such argumentation frameworks can be automatically analyzed and solved by translating them to a logic program PAF whose declarative semantics yield a transparent solution with many desirable properties, e.g., uncontroversial updates are accepted, unjustified ones are rejected, and the remaining ambiguities are exposed and presented to users for further analysis. After motivating the problem, we introduce our approach and illustrate it with a detailed running example introducing both well-founded and stable semantics to help understand the AF solutions. We have begun to develop open source tools and Jupyter notebooks that demonstrate the practicality of our approach. In future work we plan to develop a toolkit for conflict resolution that can be used in conjunction with OpenRefine, a popular interactive data cleaning tool.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Yilin Xia; Shawn Bowers, Lan Li, Bertram Ludäscher
This work is licensed under a Creative Commons Attribution 4.0 International License.
Copyright for papers and articles published in this journal is retained by the authors, with first publication rights granted to the University of Edinburgh. It is a condition of publication that authors license their paper or article under a Creative Commons Attribution 4.0 International (CC BY 4.0) licence.